Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN TỰ VẼ HÌNH NHA
a) Xét △NAB và △NEM có:
NA=NE (gt)
MN=NB (N là trung điểm của MB)
∠MNE=∠BNA ( đối đỉnh )
=> △NAB=△NEM (c.g.c)
b) Ta có: AB= 1/2CB
mà CM=MB ( M là trung điểm )
=>AB=MB
=> △MAB cân tại B
c) CN là đường trung tuyến △AEC
mà NM=1/3NC
=> M là trọng tâm của △AEC
d) Lấy F là trung điểm của AM
BF cắt AN tại I
trung tuyến BF và AN cắt nhau tại I
=>IA=2/3AN
mà △ABM cân tại B
=> BF là đường cao AM
=>∠AFI=90o
Ta có: ∠AIB là góc ngoài của △AIF tại I
=> ∠AIB>∠AFI
=>∠AIB là góc tù
=> AB>AI ( quan hệ giữa góc và cạnh đối diện )
hay AB>2/3AN
a)
Xet tam giac NAB va tam giac NEM có
AN=EN (giả thiết)
Góc ANB=goc ENM(2 góc đối đỉnh)
BN=NM (N là trung điểm của BM)
Suy ra tam giac NAB=tam giac NEM (c-g-c)
b)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
bn ơi nếu đc thì bn vô link này tham khảo nha, dạo này mk bận quá nên k có thời gian ngồi giải chi tiết bài ra cho bn đc. Bài này mk cg đc thầy giải và hướng dẫn trên lớp rồi nên chắc chắn là bài này đúng 100% nhoa :>333 tham khảo nhấp vô đường link này có cả hình vẽ nữa nha bn ^^ => https://h.vn/hoi-dap/question/43734.html
A B C H M N D 1 2 1 2
Cm: a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
AH : chung
BH = CH (gt)
=> t/giác ABH = t/giác ACH (c.c.c)
Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{H_1}=\widehat{H_2}\) (2 góc t/ứng)
Mà \(\widehat{H_1}+\widehat{H_2}=180^0\) (kề bù)
=> \(\widehat{H_1}=\widehat{H_2}=90^0\) => t.giác AHB là t/giác vuông
c) Xét t/giác AHB và t/giác DHC
có AH = HD (gt)
BH = CH (gt)
\(\widehat{AHB}=\widehat{CHD}\) (đối đỉnh)
=> t/giác AHB = t/giác DHC (c.g.c)
=> \(\widehat{BAH}=\widehat{HDC}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD
d) Xét t/giác ABM và t/giác CNM
có: AM = MC (gt)
BM = MN (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t.giác ABM = t/giác CNM (c.g.c)
=> AB = CN (2 cạnh tứng)
Mà AB = CD (vì t/giác ABH = t/giác DCH)
=> DC = CN => C là trung điểm của BN
https://hoc24.vn/hoi-dap/question/43734.html
https://hoc24.vn/hoi-dap/question/244072.html
- Tks ạk! :))