Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)
a,
xét tam giác abd và tam giác ace có
ab=ac(gt)
góc adb=góc aec=90 độ(gt)
góc a chung
=>tam giác abd= tam giác ace(cgc)
=>bd=ce(2 cạnh tg ứng)
a, xét tam giác DCB và tam giác EBC có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (gt)
^CDB = ^BEC = 90
=> tam giác DCB = tam giác EBC (ch-gn)
=> BD = CE (đn)
b, tam giác DCB = tam giác EBC (câu a)
=> ^OCB = ^OBC (đn)
=> tam giác OBC cân tại O (đn)
=> OB = OC
xét tam giác ODC và tam giác OEB có : ^DOC = ^EOB (đối đỉnh)
^ODC = ^OEB = 90
=> Tam giác ODC = tam giác OEB (ch-gn)
c,
tam giác DCB = tam giác EBC (câu a)
=> ^OCB = ^OBC (đn)
^ABC = ^ACB (câu a)
^DCO + ^OCB = ^ACB
^EBO + ^OBC = ^ABC
=> ^DCO = ^EBO
xét tam giác ACO và tam giác ABO có : AB = AC (gt)
OC = OB (câu b)
=> tam giác ACO = tam giác ABO (c-g-c)
=> ^CAO = ^BAO mà AO nằm giữa AB và AC
=> AO là pg của ^BAC (đn)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
DO đó: ΔABD=ΔACE
SUy ra: BD=CE
b: Xét ΔOEB vuông tạiE và ΔODC vuông tại D có
BE=CD
\(\widehat{OBE}=\widehat{OCD}\)
Do đó:ΔOEB=ΔODC
c: Ta có: ΔOEB=ΔODC
nên OB=OC
Xét ΔABO và ΔACO có
OB=OC
AO chung
AB=AC
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABD vuông tạiD và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đo: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đo: ΔOEB=ΔODC
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
SUy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ta có: ΔOEB=ΔODC
nên OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
d: Xét ΔABC có AD/AC=AE/AB
nên DE//BC
Chứng minh:
a) Xét \(\Delta\) ADB và \(\Delta\) AEC, có:
Góc ADB = góc AEC(gt)
AB = AC (gt)
góc BAC chung
\(\Rightarrow\Delta ADB=\Delta AEC\) ( cạnh huyền-góc nhọn)
\(\Rightarrow BD=CE\) ( hai cạnh tương ứng)
a) Xét 2 \(\Delta\) vuông \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(AB=AC\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD=\Delta ACE\) (cạnh huyền - góc nhọn)
=> \(BD=CE\) (2 cạnh tương ứng)
b) Ta có: \(AB=AC\left(gt\right)\)
Theo câu a) ta có \(\Delta ABD=\Delta ACE.\)
=> \(AE=AD\) (2 cạnh tương ứng)
=> \(AB-AE=AC-AD\)
=> \(BE=CD.\)
Xét 2 \(\Delta\) vuông \(OEB\) và \(ODC\) có:
\(\widehat{OEB}=\widehat{ODC}=90^0\)
\(EB=DC\left(cmt\right)\)
\(\widehat{EBO}=\widehat{DCO}\) (vì \(\Delta ABD=\Delta ACE\))
=> \(\Delta OEB=\Delta ODC\) (cạnh góc vuông - góc nhọn kề)
=> \(OB=OC\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) \(ABO\) và \(ACO\) có:
\(AB=AC\left(gt\right)\)
\(BO=CO\left(cmt\right)\)
Cạnh AO chung
=> \(\Delta ABO=\Delta ACO\left(c-c-c\right)\)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc tương ứng)
=> \(OA\) là tia phân giác của \(\widehat{BAC}.\)
Chúc bạn học tốt!