\(\Delta\)ABC có AB=AC, kẻ BD \(_{\perp}\)AC, CE
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

a) Xét 2 \(\Delta\) vuông \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(AB=AC\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD=\Delta ACE\) (cạnh huyền - góc nhọn)

=> \(BD=CE\) (2 cạnh tương ứng)

b) Ta có: \(AB=AC\left(gt\right)\)

Theo câu a) ta có \(\Delta ABD=\Delta ACE.\)

=> \(AE=AD\) (2 cạnh tương ứng)

=> \(AB-AE=AC-AD\)

=> \(BE=CD.\)

Xét 2 \(\Delta\) vuông \(OEB\)\(ODC\) có:

\(\widehat{OEB}=\widehat{ODC}=90^0\)

\(EB=DC\left(cmt\right)\)

\(\widehat{EBO}=\widehat{DCO}\) (vì \(\Delta ABD=\Delta ACE\))

=> \(\Delta OEB=\Delta ODC\) (cạnh góc vuông - góc nhọn kề)

=> \(OB=OC\) (2 cạnh tương ứng)

c) Xét 2 \(\Delta\) \(ABO\)\(ACO\) có:

\(AB=AC\left(gt\right)\)

\(BO=CO\left(cmt\right)\)

Cạnh AO chung

=> \(\Delta ABO=\Delta ACO\left(c-c-c\right)\)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc tương ứng)

=> \(OA\) là tia phân giác của \(\widehat{BAC}.\)

Chúc bạn học tốt!

18 tháng 12 2016

A B C E D O

a)Xét ΔADB và ΔAEC có:

\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)

\(\widehat{A}\) : góc chung

=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)

=> BD=CE

b) Vì ΔADB=ΔAEC(cmt)

=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)

Có: AB=AE+BE

AC=AD+DC

Mà: AB=AC(gt); AE=AD(cmt)

=>BE=DC

Xét ΔOEB và ΔODC có:

\(\widehat{OEB}=\widehat{ODC}=90^o\)

BE=DC(cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

=> ΔOEB=ΔODC(g.c.g)

c) Vì: ΔOEB=ΔODC (cmt)

=> OB=OC

Xét ΔAOB và ΔAOC có:

AB=AC(gt)

\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)

OB=OC(cmt)

=> ΔAOB=ΔAOC(c.g.c)

=> \(\widehat{OAB}=\widehat{OAC}\)

=> AO là tia pg của \(\widehat{BAC}\)

14 tháng 12 2018

a,

xét tam giác abd và tam giác ace có

ab=ac(gt)

góc adb=góc aec=90 độ(gt)

góc a chung

=>tam giác abd= tam giác ace(cgc)

=>bd=ce(2 cạnh tg ứng)

14 tháng 12 2018

từ cma ta có : tam giác abd=tam giác ace

=>ad=ae(2canhj tg ứng)

lại có ab=ac(gt)

=>ab-ad=ac-ae

=>bd=ec

xét tam giác oeb và tam giác odc có

be=cd(cmt)

góc eob=góc doc(đối đỉnh)

góc oeb=góc odc=90độ(gt)

=>tam giác oeb = tam giác odc có

16 tháng 3 2020

a, xét tam giác DCB và tam giác EBC có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (gt)

^CDB = ^BEC = 90

=> tam giác DCB = tam giác EBC (ch-gn)

=> BD = CE (đn)

b, tam giác DCB = tam giác EBC (câu a)

=> ^OCB = ^OBC (đn)

=> tam giác OBC cân tại O (đn)

=> OB = OC

xét tam giác ODC và tam giác OEB có : ^DOC = ^EOB (đối đỉnh)

^ODC = ^OEB = 90

=> Tam giác ODC = tam giác OEB (ch-gn)

c, 

tam giác DCB = tam giác EBC (câu a)

=> ^OCB = ^OBC (đn)

^ABC = ^ACB (câu a)

^DCO + ^OCB = ^ACB

^EBO + ^OBC = ^ABC

=> ^DCO = ^EBO 

xét tam giác ACO và tam giác ABO có : AB = AC (gt)

OC = OB (câu b)

=> tam giác ACO = tam giác ABO (c-g-c)

=> ^CAO = ^BAO mà AO nằm giữa AB và AC 

=> AO là pg của ^BAC (đn)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC
góc BAD chung

DO đó: ΔABD=ΔACE
SUy ra: BD=CE
b: Xét ΔOEB vuông tạiE và ΔODC vuông tại D có

BE=CD

\(\widehat{OBE}=\widehat{OCD}\)

Do đó:ΔOEB=ΔODC

c: Ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔABO và ΔACO có

OB=OC

AO chung

AB=AC

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

d: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

a: Xét ΔABD vuông tạiD và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đo: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đo: ΔOEB=ΔODC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE
SUy ra: BD=CE

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC
c: ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔABO và ΔACO có

AB=AC
BO=CO

AO chung

DO đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

d: Xét ΔABC có AD/AC=AE/AB

nên DE//BC

1 tháng 1 2020

undefined

1 tháng 1 2020

Chứng minh:

a) Xét \(\Delta\) ADB và \(\Delta\) AEC, có:

Góc ADB = góc AEC(gt)

AB = AC (gt)

góc BAC chung

\(\Rightarrow\Delta ADB=\Delta AEC\) ( cạnh huyền-góc nhọn)

\(\Rightarrow BD=CE\) ( hai cạnh tương ứng)