Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M N 1 1 2 2 3 3
Bài làm
a) Vì tam giác ABC cân tại A
=> Góc ABC = góc ACB ( 2 góc ở đáy )
Xét tam giác ABC ta có:
A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )
hay ABC + ACB = 180o - A
=> 2ABC = 180o - A ( 1 )
Ta có: AB + BD = AD
AC + CE = AE
Mà AB = AC ( giả thiết )
BD = CE ( giả thiết )
=> AD = AE
=> Tam giác ADE cân tại A
=> Góc D = góc E
Xét tam giác ADE
Ta có: A + D + E = 180o
hay D + E = 180o - A
=> 2D = 180o - A ( 2 )
Từ ( 1 ) và( 2 ) => 2D = 2ABC
=> D = ABC
Mà góc D và góc ABC ở vị trí đồng vị
=> DE // BC ( đpcm )
b) Ta có: B1 = B2 ( 2 góc đối đỉnh )
C1 = C2 ( 2 góc đối đỉnh )
Mà B1 = C1 ( tam giác ABC cân tại A )
=> B2 = C2
Xét tam giác MBD và tam giác NCE
có: Góc BMD = góc CNE = 90o
cạnh huyền: BD = CE ( giả thiết )
Góc nhọn: B2 = C2 ( chứng minh trên )
=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )
=> MB = NC. ( 2 cạnh tương ứng )
Ta có: MB + BC = MC
NC + BC = NB
Mà MB = NC ( chứng minh trên )
Cạnh BC chung
=> MC = NB
Xét tam giác ACM và tam giác ABN
Có: AB = AC ( giả thiết )
B1 = C1 ( Tam giác ABC cân tại A )
MC = NB ( chứng minh trên )
=> Tam giác ACM = tam giác ABN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
=> Tam giác AMN cân tại A ( đpcm )
~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~
a) Vì AB=AC mà BD=CE
Suy ra : AB+BD=AC+CE
Suy ra AD= AE
Suy ra tam giác DAE cân tại A
Suy ra \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)
Ta có tam giác ABC cân tại A
suy ra \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)
Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)
mà hai góc ở vị trí đồng vị . Suy ra \(DE//BC\)
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
a: Xét ΔBED vuông tại E và ΔCFD vuông tại F có
DB=DC
góc B=góc C
DO đó: ΔBED=ΔCFD
Suy ra: BE=CF
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
Do đó: ΔAED=ΔAFD
Suy ra: AE=AF và DE=DF
=>AD là đường trung trực của EF
c: Xét ΔEFM có
FD là đuòng trung tuyến
FD=EM/2
Do đó: ΔFEM vuông tại F
a: HB=HC=6cm
\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đo: ΔABM=ΔACN
Xét ΔBDM vuông tại D và ΔCEN vuông tại E có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBDM=ΔCEN
c: Xét ΔKBC có
KH là đường cao
KH là đường trung tuyến
Do đó:ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
=>\(\widehat{KCB}=\widehat{DBM}\)
=>\(\widehat{KCB}=\widehat{ECN}\)
=>\(\widehat{KCB}+\widehat{BCE}=180^0\)
=>K,E,C thẳng hàng
Hình bạn tự vẽ nhé!
Giải:
Vì D là trung điểm của AC (gt)
nên AD = CD
Xét \(\Delta ABD\) và \(\Delta CED\) có:
AD = CD (chứng minh trên)
\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)
ED = BD (gt)
\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c) (1)
\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AB // CD (dấu hiệu nhận biết) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b) Ta có: AF _|_ BD tại F
CG _|_ DE tại G
\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)
\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)
Xét \(\Delta ADF\) và \(\Delta CDG\) có:
AD = CD (chứng minh trên)
\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)
\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)
\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)
\(\Rightarrow\) DF = DG (2 cạnh tương ứng) (4)
Từ (3), (4) \(\Rightarrowđpcm\)
c) Xét \(\Delta CDE\) có:
Giao điểm 2 đường thẳng CG và EI là M
CG, EI đều là đường cao của \(\Delta CDE\)
\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)
\(\Rightarrow DM\perp AB\)(5)
Xét \(\Delta ABD\) có:
Giao điểm 2 đường thẳng CG, EI là M
AF, BH đều là đường cao của \(\Delta ABD\)
\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)
\(\Rightarrow DK\perp AB\) (6)
Từ (5), (6) suy ra đpcm
a) ( Gọi giao điểm của AD và MN là F )
Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D
có: AB=AC (gt)
AD là cạnh chung
=> tam giác ABD = tam giác ACD ( cạnh huyền- cạnh góc vuông)
=> góc BAD = góc CAD ( 2 góc tương ứng)
Xét tam giác AMD vuông tại M và tam giác AND vuộng tại N
có: góc BAD = góc CAD ( cmt)
AD là cạnh chung
=> tam giác AMD = tam giác AND ( cạnh huyền - góc nhọn)
=> AM = AN ( 2 cạnh tương ứng)
Xét tam giác MAF và tam giác NAF
có: MA=NA ( cmt)
góc BAD = góc CAd ( cmt)
AF là cạnh chung
=> tam giác MAF = tam giác NAF ( c-g-c)
=> MF= NF ( 2 cạnh tương ứng) (1)
góc AFM = góc AFN ( 2 góc tương ứng)
mà góc AFM + góc AFN = 180 độ ( kề bù)
=> góc AFM + góc AFM = 180 độ
2 góc AFM =180 độ
góc AFM = 180 độ : 2
góc AFM = 90 độ
\(\Rightarrow AD\perp MN⋮F\) ( định lí) (2)
Từ (1); (2) => AD là đường trung trực của MN
b) ta có: tam giác AMD = tam giác AND ( phần a)
=> góc MDF = góc NDF ( 2 góc tương ứng)
MD = ND ( 2 cạnh tương ứng)
mà MD = ED ( gt)
=> ND = ED ( = MD)
ta có: góc MDF + góc FDC + góc EDC = 180 độ
thay số: góc MDF + 90 độ + góc EDC = 180 độ
góc MDF + góc EDC = 90 độ
=> góc MDF + góc EDC = góc NDF + góc NDC ( = góc FDC)
=> góc EDC = góc NDC ( góc MDF = góc NDF)
Xét tam giác CDN và tam giác CDE
có: ND = ED( cmt)
góc NDC = góc EDC ( cmt)
CD là cạnh chung
=> tam giác CDN = tam giác CDE ( c-g-c)
=> góc CND = góc CED = 90 độ ( 2 góc tương ứng)
=> góc CED = 90 độ
\(\Rightarrow CE\perp DE⋮E\) ( định lí)
c) ta có: tam giác ABD = tam giác ACD ( phần a)
=> BD = CD ( 2 cạnh tương ứng)
mà BD +CD = BC ( D thuộc BC)
=> BD +BD = BC
thay số: 2 BD = 10
BD = 10 :2
BD = 5 cm
Xét tam giác BDM vuông tại M
có: \(MD^2+BM^2=BD^2\) ( py- ta -go)
thay số: \(MD^2+3^2=5^2\)
\(MD^2+9=25\)
\(MD^2=25-9\)
\(MD^2=16\)
\(\Rightarrow MD=4cm\)
mà MD = ME ( phần b)
=> ME = 4cm
Chúc bn học tốt !!!
Bn có chắc chắn ko ?