Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác AOM và tam giác BOM có:
góc OAM= góc OBM (=90 độ)
OM chung
góc AOM= góc BOM( Oz là tia phân giác)
=>tam giác AOM = tam giác BOM (cạnh huyền, góc nhọn)
=>OA=OB( 2 cạnh tương ứng)
gọi giao điểm của AB và Oz là I
Xét tam giác AIO và tam giác BIO có:
OI chung
góc AOI=góc BOI(Oz là tia phân giác)
OA=OB(cmt)
=> tam giác AIO = tam giác BIO(cgc)
=> AI=BI(2 cạnh tương ứng) (1)
=>góc AIO= góc BIO (2 góc tương ứng)
mà góc AIO+ góc BIO=180 độ( 2 góc kề bù)
=>góc AIO= góc BIO=1/2.180 độ=90 độ
=> AB vuông góc OM tại I (2)
Từ (1) và (2)=>OM là đường trung trực của đoạn thẳng AB
b)Xét tam giác OAC và tam giác OBD có:
góc OAC=góc OBD(=90 độ)
OA=OB (cmt)
góc O chung
=>tam giác OAC = tam giác OBD(g.c.g)
=>OC=OD(2 cạnh tương ứng)
Xét tam giác DMO và tam giác CMO có:
OM chung
góc DOM=góc COM(Oz là tia phân giác)
OD=OC(cmt)
=>tam giác DMO = tam giác CMO(c.g.c)
=>DM=CM(2 cạnh tương ứng)
=> tam giác DMC cân tại M
a) xét tam giác BAI và AIC có:
AB = AC (gt)
góc A1 = góc A2 ( AI là p/giác của góc A)
AI chung
=> tam giác BAI = tam giác AIC (c.g.c)
=> góc AIB = góc AIC (góc tương ứng)
ta có: góc AIB + góc AIC = 1800 (kkef bù)
=> 2 góc AIB = 1800
=> góc AIB = \(\frac{180^0}{2}=90^0\)
=> AI vuông góc BC
a.vì \(\Delta ABC\)cân tại A mà AI là đường phân phân giác của\(\widehat{A}\)=>AI đồng thời là đường cao và đường trung tuyến ứng với cạnh BC của tam giác ABC
=>\(AI\perp BC\)
b.xét tam giác ABC có
AI,CM là hai đường trung tuyến của tam giác ABC(gt)(cmt)
mà AI cắt CM tại G=>G là trọng tâm của tam giác ABC
=>BG là đường trung tuyến của tam giác ABC
c.ta có IB=IC=BC/2=18/2=9(cm)(AI là đương trung tuyến ứng với cạnh BC của tam giác ABC=>I là trung điểm của tam bc)
xét tam giácACI vuông tại I có
AC^2=AI^2=IC^2(ĐL py-ta-go)
hay 15^2=9^2+AI^2
=>AI^2=225-81=144
=>AI=12(cm)
tam giác ABC có G là trọng tâm tam giác ABC ;AI là đường trung tuyến ứng với cạnh BC của tam giác ABC
=>IG=2/3AI=2/3.12=89(cm)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét 2 tam giác BAI và tam giác CAI, ta có:
AB = AC (giả thiết tam giác cân)
góc BAI = góc CAI (AI là tia phân giác góc A)
AI là cạnh chung
\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)
\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)
Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)
\(\Rightarrow\) AI vuông góc với BC
b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)
\(\Rightarrow\) AI là trung tuyến của tg ABC
Lại có: BD là trung tuyến của tg ABC
Mà AD giao với BC tại M nên M là trọng tâm của tg ABC
c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)
Áp dụng định lí Pitago vào tg vuông AIB có:
\(AB^2=BI^2+AI^2\)
\(\Rightarrow AI^2=AB^2-BI^2\)
\(\Rightarrow AI^2=5^2-3^2=25-9=16\)
\(\Rightarrow\) \(AI=4\) (cm)
\(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)
Vậy AM = 8/3 (cm)
Chúc bạn học tốt !!!
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Vì \(\Delta\)ABC cân tại A mà AI là tia phân giác \(\widehat{A}\)
=> AI là đường cao \(\Delta ABC\)
=>AI\(\perp\)BC
b) Vì \(\Delta\)ABC cân tại A mà AI là tia phân giác \(\widehat{A}\)
=> AI là đường trung tuyến \(\Delta\)ABC
Vì D là trung điểm của \(\Delta\)ABC => BD là trung tuyến \(\Delta\)ABC nối từ đỉnh B
mà BD cắt AI tại M => M là trọng tâm của \(\Delta\)ABC
c) Vì AI là đường trung tuyến \(\Delta\)ABC
=> BI = IC =\(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Vì AI \(\perp\)BC => \(\Delta\)ABI vuông tại A
=> \(BI^2+AI^2=AB^2\)
hay 32+AI2= 52
suy ra: 9 + AI2 = 25
=> AI2 = 16
=> AI = \(\sqrt{16}\)
=> AI = 4cm
Mà AI là đường trung tuyến => AM=\(\dfrac{2}{3}AI\)
=> AM=\(\dfrac{8}{3}\)