\(\Delta ABC\) cân tại A ( góc A nhọn). Tia phân giác của góc A cắt BC tại I

a)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

a)Xét tam giác AOM và tam giác BOM có:
góc OAM= góc OBM (=90 độ)
OM chung 
góc AOM= góc BOM( Oz là tia phân giác)
=>tam giác AOM = tam giác BOM (cạnh huyền, góc nhọn)
=>OA=OB( 2 cạnh tương ứng)
gọi giao điểm của AB và Oz là I
Xét tam giác AIO và tam giác BIO có:
OI chung 
góc AOI=góc BOI(Oz là tia phân giác)
OA=OB(cmt)
=> tam giác AIO = tam giác BIO(cgc)
=> AI=BI(2 cạnh tương ứng) (1)
=>góc AIO= góc BIO (2 góc tương ứng)
mà góc AIO+ góc BIO=180 độ( 2 góc kề bù)
=>góc AIO= góc BIO=1/2.180 độ=90 độ 
=> AB vuông góc OM tại I (2)
Từ (1) và (2)=>OM là đường trung trực của đoạn thẳng AB
b)Xét tam giác OAC và tam giác OBD có:
góc OAC=góc OBD(=90 độ)
OA=OB (cmt)
góc O chung
=>tam giác OAC = tam giác OBD(g.c.g)
=>OC=OD(2 cạnh tương ứng)
Xét tam giác DMO và tam giác CMO có:
OM chung
góc DOM=góc COM(Oz là tia phân giác)
OD=OC(cmt)
=>tam giác DMO = tam giác CMO(c.g.c)
=>DM=CM(2 cạnh tương ứng)
=> tam giác DMC cân tại M

a) xét tam giác BAI và AIC có:

               AB = AC (gt)

               góc A1 = góc A2 ( AI là p/giác của góc A)

                 AI chung

=> tam giác BAI = tam giác AIC (c.g.c)

=> góc AIB = góc AIC (góc tương ứng)

ta có: góc AIB + góc AIC = 1800 (kkef bù)

            => 2 góc AIB = 1800

             => góc AIB = \(\frac{180^0}{2}=90^0\)

=> AI vuông góc BC

10 tháng 5 2016

các bạn giúp  mik bài này 

10 tháng 5 2016

a) Xét 2 tam giác BAI và tam giác CAI, ta có:

       AB = AC (giả thiết tam giác cân)

 góc BAI = góc CAI (AI là tia phân giác góc A)

       AI là cạnh chung

\(\Rightarrow\Delta\) BAI = \(\Delta\) CAI (c.g.c)

\(\Rightarrow\) góc BIA = góc CIA (hai góc tương ứng)

Mà 2 góc này ở vị trí kề bù nên ta có: góc BIA = góc CIA = 1/2.\(180^0\)=\(90^0\)

\(\Rightarrow\) AI vuông góc với BC

b) Ta có: BI = CI (2 cạnh tương ứng do tg BAI = tg CAI)

\(\Rightarrow\) AI là trung tuyến của tg ABC

Lại có: BD là trung tuyến của tg ABC

Mà AD giao với BC tại M nên M là trọng tâm của tg ABC

c) Ta có: BI = CI = 1/2.BC = 1/2.6 = 3(cm)

 Áp dụng định lí Pitago vào tg vuông AIB có:

            \(AB^2=BI^2+AI^2\)

            \(\Rightarrow AI^2=AB^2-BI^2\)

             \(\Rightarrow AI^2=5^2-3^2=25-9=16\)

            \(\Rightarrow\) \(AI=4\) (cm)

            \(\Rightarrow AM=\frac{2}{3}.AI=\frac{2}{3}.4=\frac{8}{3}\) (cm)

Vậy AM = 8/3 (cm)

Chúc bạn học tốt !!!

10 tháng 8 2020

A B C I D M

a, Xét tam giác ABI và tam giác ACI có :

             cạnh AI chung

            góc IAB = góc IAC ( vì AI là phân giác góc A )

            AB = AC ( tam giác ABC cân tại A )

Do đó : tam giác ABI = tam giác ACI ( c.g.c )

=> góc AIB = góc AIC ( hai góc tương ứng )

mà góc AIB và góc AIC là hai góc kề bù 

=> góc AIB = góc AIC = \(\frac{180^0}{2}\)= 90độ

Vậy AI vuông góc với BC 

b,Theo câu a : tam giác ABI = tam giác ACI

=> BI = CI ( cạnh tương ứng )

=> AI là đường trung tuyến của BC 

Vì D là trung điểm của AC nên BD là đường trung tuyến của AC 

mà BD và AI cắt nhau tại M 

Vậy M là trọng tâm của tam giác ABC 

c, Vì I là trung điểm của BC nên

BI = CI = \(\frac{BC}{2}=\frac{6}{2}\)= 3cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABI có :

\(AI^2=AB^2-BI^2\)

\(\Rightarrow AI^2=5^2-3^2\)

\(\Rightarrow AI^2=16\)

\(\Rightarrow AI=4cm\)

Vì M là trọng tâm của tam giác ABC nên :

\(AM=\frac{2}{3}AI\)

\(\Rightarrow AM=\frac{2}{3}.4\approx2,7cm\)

Vậy AM \(\approx\)2,7cm . 

Học tốt

6 tháng 5 2018

a.vì \(\Delta ABC\)cân tại A mà AI là đường phân phân giác của\(\widehat{A}\)=>AI đồng thời là đường cao và đường trung tuyến ứng với cạnh BC của tam giác ABC

=>\(AI\perp BC\)

b.xét tam giác ABC có

AI,CM là hai đường trung tuyến của tam giác ABC(gt)(cmt)

mà AI cắt CM tại G=>G là trọng tâm của tam giác ABC

=>BG là đường trung tuyến của tam giác ABC

c.ta có IB=IC=BC/2=18/2=9(cm)(AI là đương trung tuyến ứng với cạnh BC của tam giác ABC=>I là trung điểm của tam bc)

xét tam giácACI vuông tại I có

AC^2=AI^2=IC^2(ĐL py-ta-go)

hay 15^2=9^2+AI^2

=>AI^2=225-81=144

=>AI=12(cm)

tam giác ABC có G là trọng tâm tam giác ABC ;AI là đường trung tuyến ứng với cạnh BC của tam giác ABC

=>IG=2/3AI=2/3.12=89(cm)

18 tháng 2 2016

Vẽ hình ra nhé : ∆ 

8 tháng 5 2017

a) Vì \(\Delta\)ABC cân tại A mà AI là tia phân giác \(\widehat{A}\)

=> AI là đường cao \(\Delta ABC\)

=>AI\(\perp\)BC

b) Vì \(\Delta\)ABC cân tại A mà AI là tia phân giác \(\widehat{A}\)

=> AI là đường trung tuyến \(\Delta\)ABC

Vì D là trung điểm của \(\Delta\)ABC => BD là trung tuyến \(\Delta\)ABC nối từ đỉnh B

mà BD cắt AI tại M => M là trọng tâm của \(\Delta\)ABC

c) Vì AI là đường trung tuyến \(\Delta\)ABC

=> BI = IC =\(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Vì AI \(\perp\)BC => \(\Delta\)ABI vuông tại A

=> \(BI^2+AI^2=AB^2\)

hay 32+AI2= 52

suy ra: 9 + AI2 = 25

=> AI2 = 16

=> AI = \(\sqrt{16}\)

=> AI = 4cm

Mà AI là đường trung tuyến => AM=\(\dfrac{2}{3}AI\)

=> AM=\(\dfrac{8}{3}\)