Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy A và B nằm cùng phía với Δ
a. M ∈ Δ => M(m ; -1 - 2m)
=> \(\overrightarrow{MA}\) = ( -m ; 4 + 2m) ; \(\overrightarrow{AB}\) = (1 ; 2)
Ta có : \(\left|MA-MB\right|\le AB\)
Dấu "=" xảy ra ⇔ A, M, B thẳng hàng
⇔ -m = \(\frac{4+2m}{2}\) ⇔ m = -1 => M ( -1 ; 1)
b. N ∈ Δ => N(n ; -1 - 2n)
Qua Δ lấy B' đối xứng với B => B' (\(\frac{-27}{5};\frac{9}{5}\))
=> \(\overrightarrow{B'A}\) = (\(\frac{27}{5};\frac{6}{5}\)) ; \(\overrightarrow{AN}\) = (n ; - 4 - 2n)
Mặt khác: NA + NB = NA + NB' ≥ AB'
Dấu "=" xảy ra ⇔ N, A, B' thẳng hàng
⇔ \(\frac{\frac{27}{5}}{n}=\frac{\frac{6}{5}}{-4-2n}\) ⇔ n = \(\frac{-9}{5}\) => N(\(\frac{-9}{5};\frac{13}{5}\))
Câu 1:
Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)
\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)
Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt
Phương trình AB có dạng: \(x+y+c=0\)
Theo công thức diện tích tam giác:
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)
\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)
\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)
Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)
TH1: \(x+y-1=0\Rightarrow y=1-x\)
Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)
Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM
TH2: tương tự.
Bạn tự làm nốt phần còn lại nhé
Đây là đề bài 1 chính thức nha bạn!
Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.
Từ giả thiết suy ra AB=5 và A, B trở về cùng 1 phía của đường thẳng \(\Delta\)
a) Nếu tam giác ABC cân tại C thì CA=CB và từ đó, tìm được \(C\left(-\frac{47}{4};\frac{47}{2}\right)\)
Nếu tam giác ABC cân tại C thì AC=AB=5, từ đó tìm được C(2;-4) và C(-2;4) thỏa mãn. Nếu tam giác ABC cân tại B thì BC=BA=5 nhưng \(d\left(B;\Delta\right)=\frac{16}{\sqrt{5}}>5\) nên trong trường hợp này không có điểm C thỏa mãn
b) Với I là trung điểm AB thì \(\overrightarrow{AD}+\overrightarrow{BD}=\overrightarrow{2ID}\)
Do đó \(D\in\Delta:\left|\overrightarrow{AD}+\overrightarrow{BD}\right|\) nhỏ nhất khi và chỉ khi D là hình chiếu của I trên \(\Delta\).
Vậy đáp số : \(D\left(-\frac{1}{5};\frac{2}{5}\right)\)
c) \(E\left(\frac{2}{11};-\frac{4}{11}\right)\)
d) \(\left|FA-FB\right|\ge0\),\("="\)\(\Leftrightarrow FA=FB\Leftrightarrow F\left(-\frac{47}{4};\frac{47}{2}\right)\)
Câu 3:
Đường tròn tâm \(I\left(1;2\right)\) bán kính \(R=\sqrt{2}\)
Xét đường thẳng d có pt: \(x+y-T=0\)
Để (d) và (C) có điểm chung M
\(\Leftrightarrow d\left(I;d\right)\le R\)
\(\Leftrightarrow\frac{\left|1+2-T\right|}{\sqrt{1^2+1}^2}\le\sqrt{2}\)
\(\Leftrightarrow\left|T-3\right|\le2\Rightarrow T\le5\)
\(\Rightarrow T_{max}=5\) khi (d) tiếp xúc (P)
Giải hệ \(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x+y-5=0\end{matrix}\right.\) ta được \(M\left(2;3\right)\)
Câu 1:
Gọi \(C\left(1;0\right)\Rightarrow OC=1;OA=4\)
Với M là điểm bất kì thuộc (C) \(\Rightarrow OM=R=2\)
Xét hai tam giác OCM và OMA có:
\(\widehat{MOC}\) chung
\(\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{2}\)
\(\Rightarrow\Delta OCM\sim\Delta OMA\Rightarrow\frac{AM}{CM}=\frac{OM}{OC}=2\Rightarrow AM=2CM\)
\(\Rightarrow P=MA+2MB=2CM+2MB=2\left(BM+CM\right)\ge2BC\)
\(\Rightarrow P_{min}=2BC\) khi M;B;C thẳng hàng hay M là giao điểm của đoạn thẳng BC và (C)
\(\overrightarrow{CB}=\left(2;4\right)=2\left(1;2\right)\Rightarrow\) phương trình BC có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=2t\end{matrix}\right.\)
Tọa độ M thỏa mãn:
\(\left(1+t\right)^2+\left(2t\right)^2=4\)
Bạn tự giải nốt (chỉ lấy nghiệm M nằm giữa B và C)
Câu 2: hoàn toàn tương tự câu 1, gọi \(C\left(0;1\right)\Rightarrow\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{3}\Rightarrow...\)
+câu a:+ gọi d là đường thẳng qua O vuông góc với \(\Delta\): pt d :x+y+m=0 , O(00) \(\in d\Rightarrow m=0\). vậy pt d :x+y =0
+giao điểm H của d và \(\Delta\) thỏa \(\left\{{}\begin{matrix}x-y+2=0\\x+y=0\end{matrix}\right.\Rightarrow H\left(-1;1\right)\)
+goi O' la diem doi xung voi O qua d \(\Rightarrow\)H là trung điểm OO'
\(\Rightarrow O'\left(-2;2\right)\)
câu b : goi M (a;b) \(\in\Delta\Rightarrow M\left(a;a+2\right)\)
+ O' doi xung O qua \(\Delta\) nen MO = MO'.
+ OM+MA=O'M+MA\(\ge OA\) dấu bằng xảy ra khi O',M,A thang hang \(\Leftrightarrow\overrightarrow{O'M}\)cùng phương với \(\overrightarrow{O'A}\)
+ \(\overrightarrow{O'M}=\left(a+2;a\right);\overrightarrow{O'A}=\left(4;-2\right)\)
\(\Rightarrow\dfrac{a+2}{4}=\dfrac{a}{-2}\Rightarrow a=\dfrac{-2}{3}\Rightarrow M\left(\dfrac{-2}{3};\dfrac{4}{3}\right)\)
Co A B
Vì \(2.\left(-2\right)-3+6=11>0\)
và \(2.1-3\left(-2\right)+6=14>0\) nê A,B cùng phía đối với \(\Delta\). Khi đó mọi \(C\in\Delta\) đều có :
\(\left|CA-CB\right|\le\left|C_0A-C_0B\right|=AB\)
Dấu đẳng thức xảy ra khi và chỉ khi \(C\) trùng với \(C_0\) là giao điểm của đường thẳng AB với \(\Delta\). Do đó tọa độ của điểm C cần tì là nghiệm của hệ phương trình :
\(\begin{cases}2x-3y+6=0\\\frac{x+y}{3}=\frac{y+3}{1}\end{cases}\)
Giải hệ ta được \(\left(x;y\right)=\left(-13;-\frac{20}{3}\right)\) vậy điểm cần tìm là \(C=\left(-13;-\frac{20}{3}\right)\)