Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M
Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)
Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :
\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\) \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)
Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)
b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có
\(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)
suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)
Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình
\(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)
Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)
Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)
a. Vì \(2-2.5+3=-5< 0\) và \(-4-2.5+3=-11< 0\) nên A, B cùng phía với đường thẳng \(\Delta\).
Gọi \(A'\left(x;y\right)\) là điểm đối xứng với A qua \(\Delta\), khi đó (x;y) là nghiệm của hệ :
\(\begin{cases}\frac{x-2}{1}=\frac{y-5}{-2}\\\frac{x-2}{1}-2.\frac{y+5}{2}+3=0\end{cases}\)
Giải hệ ta được : \(\left(x;y\right)=\left(4;1\right)\) suy ra \(\overrightarrow{A'B}=\left(-8;4\right)=4\left(-2;1\right)\)
Do đó đường thẳng A'B có phương trình tham số \(\begin{cases}x=4-2t\\y=1+t\end{cases}\)\(;t\in R\)
Suy ra điểm C cần tìm có tọa độ là nghiệm của hệ :
\(\begin{cases}x=4-2t\\y=1+t\\x-2y+3=0\end{cases}\)
Giải hệ ta có điểm C \(\left(\frac{3}{2};\frac{9}{4}\right)\)
b. Gọi I là trung điểm của AB. Khi đó\(I\left(-1;5\right)\) và \(\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CI}\), với mọi C.
Vậy \(C\in\Delta\) : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\) bé nhất \(\Leftrightarrow\left|CI\right|\) bé nhất \(\Leftrightarrow C\) là hình chiếu của I trên \(\Delta\)
Nếu \(C\left(x;y\right)\) là hình chiếu của I trên \(\Delta\) thì (x;y) là nghiệm của hệ :
\(\begin{cases}\frac{x+1}{1}=\frac{y-5}{-2}\\x-2y+3=0\end{cases}\)
Giải hệ thu được : \(\left(x;y\right)=\left(\frac{3}{5};\frac{9}{5}\right)\) vậy \(C\left(\frac{3}{5};\frac{9}{5}\right)\)
Đường thẳng \(\Delta\) có vecto pháp tuyến \(\overrightarrow{n}=\left(1;-2\right)\) nên nhận \(\overrightarrow{u}=\left(2;1\right)\) làm vecto chỉ phương.
Từ đó để ý rằng đường thẳng \(\Delta\) cắt Ox tại \(M\left(-3;0\right)\) nên \(\Delta\) có phương trình dạng tham số :
\(\begin{cases}x=-3+2t\\y=t\end{cases}\) \(\left(t\in R\right)\)
a. Xét \(C\left(-3+2t;t\right)\in\Delta\), khi đó :
\(CA+CB=\sqrt{\left(5-2t\right)^2+\left(5-t\right)^2}+\sqrt{\left(2t+1\right)^2+\left(t-5\right)^2}\)
\(=\sqrt{5t^2-30t+50}+\sqrt{5t^2-6t+26}\)
\(=\sqrt{\left(\sqrt{5}t-3\sqrt{5}\right)^2}+\sqrt{\left(\frac{3}{\sqrt{5}}-\sqrt{5}t\right)^2+\frac{121}{5}}\)
\(\ge\sqrt{\left(\frac{3}{\sqrt{5}}-3\sqrt{5}\right)^2+\left(\sqrt{5}+\frac{11}{\sqrt{5}}\right)^2}=4\sqrt{5}\)
Dấu đẳng thức xảy ra khi và chỉ khi
\(\frac{\sqrt{5}t-3\sqrt{5}}{\frac{3}{\sqrt{5}}-\sqrt{5}t}=\frac{5}{11}\Leftrightarrow t=\frac{9}{4}\)
Từ đó tìm được : \(C\left(\frac{3}{2};\frac{9}{4}\right)\)
b. Với \(C\left(=3+2t;t\right)\in\Delta\) ta có \(\overrightarrow{CA}=\left(5-2t;5-t\right)\) và \(\overrightarrow{CB}=\left(-1-2t;5-t\right)\)
Suy ra : \(\overrightarrow{CA}+\overrightarrow{CB}=\left(4-4t;10-2t\right)\) và do đó :
\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\sqrt{\left(4-4t\right)^2+\left(10-2t\right)^2}=\sqrt{\left(2\sqrt{5}t-\frac{18}{\sqrt{5}}\right)^2+\frac{256}{5}}\ge\frac{16}{\sqrt{5}}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{9}{5}\)
Do đó điểm C cần tìm là \(\left(\frac{3}{5};\frac{9}{5}\right)\)
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
Đường thẳng \(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtpt
Gọi d là đường thẳng qua B và vuông góc \(\Delta\Rightarrow d\) nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow x+2y-8=0\)
Gọi C là giao điểm d và \(\Delta\Rightarrow\left\{{}\begin{matrix}2x-y+3=0\\x+2y-8=0\end{matrix}\right.\) \(\Rightarrow C\left(\frac{2}{5};\frac{19}{5}\right)\)
A đối xứng B qua \(\Delta\Leftrightarrow C\) là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_C-x_B=-\frac{6}{5}\\y_A=2y_C-y_B=\frac{23}{5}\end{matrix}\right.\) \(\Rightarrow C\left(-\frac{6}{5};\frac{23}{5}\right)\)
\(\left\{{}\begin{matrix}t=x-2\\t=\frac{y-3}{2}\end{matrix}\right.\) \(\Rightarrow x-2=\frac{y-3}{2}\Leftrightarrow2x-y-1=0\)
Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d: \(1\left(x-3\right)+2y=0\Leftrightarrow x+2y-3=0\)
Gọi C là giao điểm d và \(\Delta\Rightarrow\) tọa độ C thỏa: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(1;1\right)\)
B đối xứng A qua \(\Delta\Leftrightarrow C\) là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_C-x_A=-1\\y_B=2y_C-y_A=2\end{matrix}\right.\) \(\Rightarrow B\left(-1;2\right)\)
\(\Delta'\) đối xứng \(\Delta\) qua A \(\Rightarrow\Delta'//\Delta\) và đi qua B
\(\Rightarrow\Delta'\) nhận \(\left(2;-1\right)\) là 1 vtpt và qua B
Pt \(\Delta'\): \(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)
PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)
Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)
MH=2 =>(4t-2)2+(3t+1)2=4
<=>25t2+10t+1=0
<=>(5t+1)2=0
<=>\(t=-\dfrac{1}{5}\)
=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)
M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'
=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)
b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)là \(\overrightarrow{n}=\left(3;-4\right)\)(1)
Lấy I(-1;-1) => I thuộc \(\Delta\)
Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)
Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0
hay 3x-4y-21=0
c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2
=>Phương trình đường tròn:
(C): (x-1)2+(y+2)2=4
+câu a:+ gọi d là đường thẳng qua O vuông góc với \(\Delta\): pt d :x+y+m=0 , O(00) \(\in d\Rightarrow m=0\). vậy pt d :x+y =0
+giao điểm H của d và \(\Delta\) thỏa \(\left\{{}\begin{matrix}x-y+2=0\\x+y=0\end{matrix}\right.\Rightarrow H\left(-1;1\right)\)
+goi O' la diem doi xung voi O qua d \(\Rightarrow\)H là trung điểm OO'
\(\Rightarrow O'\left(-2;2\right)\)
câu b : goi M (a;b) \(\in\Delta\Rightarrow M\left(a;a+2\right)\)
+ O' doi xung O qua \(\Delta\) nen MO = MO'.
+ OM+MA=O'M+MA\(\ge OA\) dấu bằng xảy ra khi O',M,A thang hang \(\Leftrightarrow\overrightarrow{O'M}\)cùng phương với \(\overrightarrow{O'A}\)
+ \(\overrightarrow{O'M}=\left(a+2;a\right);\overrightarrow{O'A}=\left(4;-2\right)\)
\(\Rightarrow\dfrac{a+2}{4}=\dfrac{a}{-2}\Rightarrow a=\dfrac{-2}{3}\Rightarrow M\left(\dfrac{-2}{3};\dfrac{4}{3}\right)\)