Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
* Xét tam giác BDE và tam giác EFB có:
+) \widehat{DEB} = \widehat{EBF} ( so le trong)
+) BE chung
+) \widehat{FEB} = \widehat{DBE} ( so le trong)
=> Tam giác BDE = tam giác EFB ( g.c.g )
=> EF = BD ( 2 cạnh tương ứng)
* Mà AD = BD ( D là trung điểm của AB)
=> EF = AD. ( cpcm)
A B C D M N 1 2 3 1 2 3
Hình ko được chuẩn lắm thôm cảm
a)Vì \(BC//DM\Rightarrow\widehat{B_2}=\widehat{N_1}\)(Dấu hiệu nhận biết 2đt //)
Vì \(AB//MN\Rightarrow\widehat{D_1}=\widehat{N_2}\)(Dấu hiệu nhận biết 2đt //)
Xét \(\Delta DBN\) và \(\Delta NMD\) có
\(\widehat{B_2}=\widehat{N_1}\left(CMT\right)\)
DN chung
\(\widehat{D_1}=\widehat{N_2}\left(CMT\right)\)
\(\Rightarrow\Delta DBN=\Delta NMD\left(g.c.g\right)\)
Câu b chờ tí
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC