K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

a,

Ta có :

tam giác CBA  vuông tại B 

Và BC=BA (gt)

=>tam giác CBA vuông cân tại B (1)

=>góc B=90°

=>góc C=góc A=45° (tổng 3 góc trong 1 tam giác=180°) (2)

Do H là trung điểm của AC (gt)

=>HC=HA (3)

có BH cạnh chung của 2 tam giác BHC và tam giác BHA  (4)

Từ (1),(2),(3),(4),suy ra:

Tam giác BHC=tam giác BHA

b,

Do tam giác CBA cân tại B (theo trên)

H là trung điểm AC(gt)

=>BH là đường trung tuyến ,là đường cao ,đường phân giác của tam giác CBA(định lý)

=>BH _|_ AC

c,

có: AK_|_AC (gt)

Và BH_|_AC (theo b)

Theo định lý hai đường thẳng song song thì nếu 2 đường thẳng cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng ấy song song với nhau.

=>BH//AK(đ p c m)

5 tháng 4 2017

A B C P K H M I a,Xét tam giác ABM=ACM có

góc B = góc C (gt)

BM=MC(gt)

AB=AC(gt)

Vậy tam giác ABM = ACM (C-G-C)

Vì MH vuông với AB,MK vuông góc với AC và tam giác ABC cân

=)góc HMB=góc KMC

b, Xét tam giác HBM và KCM có:

BM=MC(gt)

góc HMB=góc KMC

Vậy tam giác HBM=KCM(cạnh huyền góc nhọn)

=)BH = CK (2 cạnh tưng ứng)

c,

\(\widehat{ABM}=\widehat{ACM}\)

\(90^0-\widehat{ABM}=90^0-\widehat{ACM}\)

\(\Leftrightarrow\widehat{IBM}=\widehat{IMB}\)

Vậy tam giác IBM cân tại I.

5 tháng 4 2017

Like cho bạn với nha !!!!

Giúp đi mn =((

a: Xét ΔBAH vuông tại A và ΔBEH vuông tại E có

BH chung

góc ABH=góc EBH

=>ΔBAH=ΔBEH

=>BA=BE

=>ΔBAE cân tại B

b: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại H

=>H là trực tâm

=>HK vuông góc FC

c: Xét tứ giác QAKF có

M là trung điểm chung của QK và AF

=>QAKF là hình bình hành

=>QA//FK

=>Q,E,A thẳng hàng

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

b) Ta có: ΔABH=ΔACK(cmt)

⇒AH=AK(hai cạnh tương ứng)

Ta có: AK+KB=AB(do K∈AB)

AH+HC=AC(do H∈AC)

mà AB=AC(do ΔABC cân tại A)

và AH=AK(cmt)

nên KB=HC

Xét ΔKBI vuông tại K có

\(\widehat{KIB}+\widehat{IBK}=90^0\)(hai góc phụ nhau)(1)

Xét ΔHIC vuông tại H có

\(\widehat{HIC}+\widehat{HCI}=90^0\)(hai góc phụ nhau)(2)

Từ (1) và (2) suy ra

\(\widehat{KIB}+\widehat{IBK}=\widehat{HIC}+\widehat{HCI}\)

\(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)

nên \(\widehat{KBI}=\widehat{HCI}\)

Xét ΔKIB vuông tại K và ΔHIC vuông tại H có

KB=HC(cmt)

\(\widehat{KBI}=\widehat{HCI}\)(cmt)

Do đó: ΔKIB=ΔHIC(cạnh góc vuông-góc nhọn kề)

⇒IB=IC(hai cạnh tương ứng)

c) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có

AI là cạnh chung

AK=AH(cmt)

Do đó: ΔAIK=ΔAIH(cạnh huyền-cạnh góc vuông)

\(\widehat{KAI}=\widehat{HAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AK,AH

nên AI là tia phân giác của \(\widehat{KAH}\)

hay AI là tia phân giác của \(\widehat{BAC}\)

Ta có: AI là đường phân giác ứng với cạnh đáy BC của ΔABC cân tại A(do AI là tia phân giác của \(\widehat{BAC}\))

nên AI cũng là đường cao ứng với cạnh BC của ΔABC cân tại A(định lí tam giác cân)

⇒AI⊥BC(đpcm)

1 tháng 1 2020

hình tự vẽ

a, Xét △AKB và △AKC

Có: BK = KC (gt)

   AK là cạnh chung

     AB = AC (gt)

=> △AKB = △AKC (c.c.c)

b, Vì △AKB = △AKC (cmt)

=> AKB = AKC (2 góc tương ứng)

Mà AKB + AKC = 180o (2 góc kề bù)

=> AKB = AKC = 180o : 2 = 90o

=> AK ⊥ BC

c, Vì AK ⊥ BC (cmt)

        CE ⊥ BC (gt)

=> AK // CE (từ vuông góc đến song song)

2 tháng 12 2019

A B C E K

Giả thiếtAB = AC ; KB = KC ; \(\widehat{A}\)= 90O
Kết luận

a) Tam giác AKB = AKC

b) EC//AK

c) CE = CB

2 tháng 12 2019

a) Xét \(\Delta AKB\)và \(\Delta AKC\text{ có : }\hept{\begin{cases}AB=AC\\KB=KC\\AK\text{ chung}\end{cases}\left(c.c.c\right)\Rightarrow\Delta AKB=\Delta AKC}\)

\(\Rightarrow\widehat{B}=C\text{ và }\widehat{ BAK}=\widehat{CAK}=\frac{1}{2}\widehat{A}=45^{\text{O}}\left(\text{góc tương ứng}\right)\)mà \(\widehat{B}+\widehat{C}=90^{\text{O}}\left(\widehat{A}=90^{\text{O}}\right)\Rightarrow\widehat{B}=\widehat{C}=45^{\text{O}}\)

=> \(\widehat{BKA}=180^{\text{O}}-\widehat{B}-\widehat{BAK}=90^{\text{O}}\)

=> AK vuông góc với BC

b) Vì góc C vuông 

=> Góc B + Góc E = Góc C

=>  Góc B + Góc E = 90O

=> Góc E = 45O

Vì góc BAC là góc ngoài của tam giác ACE

=> Góc ACE + Góc E = 90O (vì góc BAC = 90o)

=> Góc ACE = 45o

mà Góc KAC = Góc ACE ( = 45o) và cùng so le trong

=> AK // CE

giúp mik vs huhu!!! 1.Cho ΔABC cân tại A. Kẻ AH ⊥ BC (H ∈ BC). Chứng minh rằng: a. HB = HC. b. ^ BAH = ^ CAH 2.Cho ΔABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A. 3. Cho ΔABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH⊥AB (H ∈ AB), MK⊥AC (K ∈ AC). Chứng minh rằng: a. MH = MK b. Bˆ = Cˆ 4.Hai đoạn...
Đọc tiếp

giúp mik vs huhu!!!khocroi

1.Cho ΔABC cân tại A. Kẻ AH ⊥ BC (H ∈ BC). Chứng minh rằng:

a. HB = HC.

b. ^ BAH = ^ CAH

2.Cho ΔABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A.

3. Cho ΔABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH⊥AB (H ∈ AB), MK⊥AC (K ∈ AC). Chứng minh rằng:

a. MH = MK

b. Bˆ = Cˆ

4.Hai đoạn thẳng AB và CD vuông góc với nhau tại trung điểm của mỗi đoạn. Chứng minh rằng : AC/ /BD và AC = BD.

5.Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH ⊥ AD (H ∈ AD), kẻ CK ⊥ AE (K ∈ AE). Chứng minh rằng: BH = CK.

6.Cho ΔABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH ⊥ AB (H ∈ AB), kẻ IK ⊥ AC (K ∈ AC). Chứng minh rằng : BH = CK.

7.Cho ΔABC vuông ở A. Từ A kẻ AH ⊥ BC (H ∈ BC). Trên cạnh BC lấy điểm E sao cho BE = BA. Kẻ EK ⊥ AC (K ∈ AC).

Chứng minh AK = AH.

HELP ME!!eoeo

2
3 tháng 3 2017

Có mấy bài dễ dễ mà ^.^

Sao ko động não bạn nhỉ ? vui

3 tháng 3 2017

chuẩn Nguyễn Phương Thảo, vs lại mấy pài này dạng cx kha khá giống nhau