\(\Delta ABC\)vuông cân tại A. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Tí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

Trong \(\Delta ABC\):

\(\widehat{A_1}+\widehat{B_1}+C=180^0\)

\(=>\widehat{B_1}+\widehat{C}=180^0-\widehat{A_1}=180^0-90^0=90^0\)

\(=>\widehat{B_1}=\widehat{C}=\frac{90^0}{2}=45^0\)

Xét \(\Delta DBA\):

BA = BD (gt)

=> \(\triangle DBA \text{ cân tại D}\)

\(< =>\widehat{D}=\widehat{A_2}\)

Ta có: \(\widehat{B_1}+\widehat{B_2}=180^0\)

\(=>\widehat{B_2}=180^0-\widehat{B_1}=180^0-45^0=135^0\)

Trong \(\Delta ABD\):

\(\widehat{A_2}+\widehat{D}+\widehat{B_2}=180^0\)

\(=>\widehat{A_2}+\widehat{D}=180^0-\widehat{B_2}=180^0-135^0=45^0\)

\(=>\widehat{A_2}=\widehat{D}=\frac{45^0}{2}=22,5^0\)

Vậy: \(\widehat{ADB}=22,5^0\)

11 tháng 3 2020

B D A C

Hình hơi xấu xíu :vv

a) Xét t.giác AMB và t.giác DMC có :

MA = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)

MB = MC (gt)

Vậy t.giác AMB = t.giác DMC (c.g.c)

b) Do : t.giác AMB =  t.giác DMC ( cmt ) 

=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét t.giác ABC và t.giác DCB có :

BC : cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB = DC ( cmt )

Vậy t.giác ABC = t.giác DCB ( c.g.c )

=> AC = BD

\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.

=> AC // BD

Vì : t.giác ABC = t.giác DCB ( cmt )

=> \(\widehat{BAC}=\widehat{BDC}=90^0\)

26 tháng 8 2018

a) ta có: tam giác ABC cân tại A

=> góc ABC = góc ACB ( tính chất tam giác cân)

mà góc ABC = góc HBD; góc ACB = góc KCE ( đối đỉnh)

=> góc HBD = góc KCE (= góc ABC = góc ACB)

Xét tam giác DHB vuông tại H và tam giác EKC vuông tại K

có: DB = EC (gt)

góc HBD = góc KCE (cmt)

\(\Rightarrow\Delta DHB=\Delta EKC\left(ch-gn\right)\)

=> HB = KC ( 2 cạnh tương ứng)

b) ta có: góc ABC + góc ABH = 180 độ ( kề bù)

góc ACB + góc ACK = 180 độ ( kề bù)

=> góc ABC + góc ABH = góc ACB + góc ACK ( = 180 độ)

=> góc ABH = góc ACK ( góc ABC = góc ACB)

Xét tam giác ABH và tam giác ACK

có: AB = AC (gt)

góc ABH = góc ACK

BH = CK (phần a)

\(\Rightarrow\Delta ABH=\Delta ACK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AKC}\) ( 2 góc tương ứng)

c) ( Nối H với E)

ta có: \(DH\perp BC⋮H\)

\(EK\perp BC⋮K\) 

\(\Rightarrow DH//EK\) ( định lí từ vuông góc đến //)

=> góc DHE = góc KEH ( so le trong)

ta có: tam giác DHB = tam giác EKC ( phần a)

=> DH = EK ( 2 cạnh tương ứng)

Xét tam giác DHE và tam giác KEH

có: DH = KE ( cmt)

góc DHE = góc KEH (cmt)

HE là cạnh chung

\(\Rightarrow\Delta DHE=\Delta KEH\left(c-g-c\right)\)

\(\Rightarrow\widehat{DEH}=\widehat{KHE}\) ( 2 góc tương ứng)

mà góc DEH và góc KHE nằm ở vị trí so le trong

=> HK // DE ( định lí //)

d) ta có: \(\Delta ABH=\Delta ACK\) ( phần b)

=> AH = AK ( 2 cạnh tương ứng)

 góc BAH = góc CAK ( 2 góc tương ứng)

=> góc BAH + góc BAC = góc CAK + góc BAC

=> góc HAE = góc KAD
ta có: AB = AC; BD = CE

=> AB + BD = AC + CE

=> AD = AE
Xét tam giác AHE và tam giác AKD

có: AE = AD (cmt)

góc HAE = góc KAD (cmt)

AH = AK ( cmt)

\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\)

2 tháng 9 2019

a) \(\Delta ABC\)cân tại A có \(\widehat{B}=\widehat{C}\)nên \(\widehat{A}=180^0-2.40^0=100^0\)

Vẽ \(DE//BC\left(E\in AB\right)\)

Trên tia BC lấy điểm F sao cho BD = BF.

Vì BD là phân giác của \(\widehat{B}\)nên \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}=20^0\)

Vì \(DE//BC\)nên \(\widehat{EDB}=\widehat{DBC}\)(so le trong)

Mà \(\widehat{ABD}=\widehat{DBC}\)(Do BD là phân giác của \(\widehat{B}\))

Suy ra \(\widehat{EDB}=\widehat{ABD}\)\(\Rightarrow\Delta EBD\)tại E \(\Leftrightarrow EB=ED\)(1)

Vì \(DE//BC\)nên \(\hept{\begin{cases}\widehat{AED}=\widehat{B}\\\widehat{ADE}=\widehat{C}\end{cases}}\)(đồng vị)

Mà \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A) nên \(\widehat{AED}=\widehat{ADE}\)

\(\Rightarrow\Delta AED\)cân tại A \(\Rightarrow AE=AD\)

Lại có AB = AC (gt) nên EB = DC (2)

Từ (1) và (2) suy ra ED = DC

BD = BF(theo cách vẽ) nên \(\Delta BDF\)cân tại B có \(\widehat{DBF}=20^0\)

\(\Rightarrow\widehat{BDF}=\widehat{BFD}=\frac{180^0-20^0}{2}=80^0\)

Mà \(\widehat{DFB}+\widehat{DFC}=180^0\)(kề bù) nên ​\(\widehat{DFC}=180^0-80^0=100^0\)

​Áp dụng định lý về tổng ba góc trong tam giác vào tam giác FDC, có:

       \(\widehat{FDC}=180^0-100^0-40^0=40^0\)

Xét \(\Delta AED\)và \(\Delta FDC\)​có:

      \(\widehat{ADE}=\widehat{FCD}\left(=40^0\right)\)

      ED = DC( cmt)

      \(\widehat{AED}=\widehat{FDC}\left(=40^0\right)\)

Suy ra \(\Delta AED=\Delta FDC\left(g-c-g\right)\)

\(\Rightarrow AD=FC\)(hai cạnh tương ứng)

Lúc đó: \(BD+AD=BF+FC=BC\left(đpcm\right)\)

b) Vẽ tam giác đều AMG trên nửa mặt phẳng bờ AB chứa điểm C

Ta có: \(\widehat{GAC}=\widehat{BAC}-\widehat{BAG}=100^0-60^0=40^0\)

2 tháng 9 2019

Cách khác theo cô Huyền:3

Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0

b) Vì H là trung điểm BC 

=> BH = HC 

Mà BH = BE (gt)

=> BH = HC = BE 

Vì ∆ABC cân tại A 

=> AB = AC 

Mà AB = CD (gt)

=> AB = AC = CD 

Ta có : 

EB + AB = AE 

HC + CD = HD 

=> AE = HD 

a) Ta có : 

ACB là góc ngoài tại C của ∆ACD 

Vì CA = CD 

=> ∆ACD cân tại C 

=> D = DAC = 2D 

=> ACB = D + CAD = 2D 

=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)