\(\Delta ABC,\widehat{A}=90^o,AC=3AB\)D là điểm thuộc đoạn AC sao cho AD=2DC....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

đợi tý chị làm cho

10 tháng 2 2019

em vẽ hình ra chưa

15 tháng 2 2019

Bài này em đăng một lần rồi mà

15 tháng 2 2019

nhưng chị mới bày em một câu

7 tháng 2 2021

giúp tui với!

BTVN đây , nhờ mọi người giải giùm:1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:a,\(\Delta\)ABD = \(\Delta\)ACEb, \(\Delta AED\)cânc, AH là đường trung trực của ED.d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)= \(\widehat{DKC}\)2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy...
Đọc tiếp

BTVN đây , nhờ mọi người giải giùm:

1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:

a,\(\Delta\)ABD = \(\Delta\)ACE

b, \(\Delta AED\)cân

c, AH là đường trung trực của ED.

d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)\(\widehat{DKC}\)

2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH, EK \(\perp\)BC. CMR: a, HB=CK

b, \(\widehat{AHB}\)\(\widehat{AKC}\)

c,HK // DE

d. \(\Delta AHE\)\(\Delta AKD\)

3/ Cho \(\widehat{xOy}\)và tia phân giác Ot. Trên tia Ot lấy điểm M, trên các tia Õ và Oy lần lượt lấy các điểm A và B sao cho OA=OB. Gọi H là giao điểm của Ab và Ot.CMR:

a, MA = Mb

b, OM là trung trực của AB

c, Cho AB = 6cm, OA=5cm. Tính OH

( Ko gấp lắm nên từ từ giải rõ ràng, đúng kết quả nhé)

 

3
11 tháng 2 2018

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC

A B C D E H K

a) Xét tam giác ABD và tam giác ACE có:

\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)

b) AE=AD(vì tam giác ABD=tam giác ACE 

=> tam giác AED cân tại A 

c) Xem lại đề

d) Xét tam giác BCK có:

\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)

=> CD là đường trung trực của BK

=> BC=CK

=> tam giác BCK cân tại C

=>\(\widehat{CBK}=\widehat{CKB}\)

Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)

=> góc ECB= góc CKB 

11 tháng 2 2018

3) Đề là: 

Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH: 
a/ MA = MB 
b/ OM là đường trung trực của AB 
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ?  (bn viết khó hiểu qá nên mk xem lại trong vở)

Tự vẽ hình!

a/ Xét tam giác OAM và tam giác OBM, có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b/ Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH, có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2)

=> MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c/ Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H  có: OA2 = OH2 + AH2 ( định lí Py-ta-go)

=> 52 = OH2 + 32 

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

\(\Rightarrow OH=\sqrt{16}\)

\(\Rightarrow OH=4cm\)

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@