Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔCKA có
góc AHB=góc AKC=90 độ
AB=CA
góc HAB=góc ACK
=>ΔAHB=ΔCKA
b: ΔAHB=ΔCKA
=>AH=CK
Xet ΔHIA và ΔKIC có
IA=IC
AH=CK
góc HAI=góc ICK
=>ΔHIA=ΔKIC
=>IH=IK
c: \(S_{BCKH}=\dfrac{1}{2}\cdot\left(BH+CK\right)\cdot HK\)
\(=\dfrac{1}{2}\cdot HK^2=IM^2< =IA^2\)
Dấu = xảy ra khi M trùng với A
=>d vuông góc AI
a: Xét ΔAKC và ΔAKB có
AK chung
KC=KB
AC=AB
Do dó: ΔAKC=ΔAKB
b: Xét ΔAKC vuông tại K và ΔHKB vuông tại K có
KA=KH
KC=KB
Do đó: ΔAKC=ΔHKB
=>góc CAK=góc BHK
=>AC//HB
giúp tui giải lun nha
cho tam giác ABC vuông cân tại A. qua A kẻ đường thẳng D sao cho BC cùng thuộc nửa mặt phẳng bờ là đường thẳng D. gọi I là trung điểm của BC. gọi H,M,K lần lượt là hình chiếu của B,I,C lên đường thẳng C a, C/m tam giác BHA=tam giác AKC b,C/m tam giác HIA=tam giác KIC c, Đường thẳng D ở vị trí nào để đt tứ giác BCKH lớn nhất
a:
b:
Ta có: CE\(\perp\)CA
AB\(\perp\)CA
Do đó: CE//AB
Xét ΔCEB và ΔABE có
CE=AB
\(\widehat{CEB}=\widehat{ABE}\)(hai góc so le trong, AB//CE)
BE chung
Do đó: ΔCEB=ΔABE
=>CB=AE
Ta có: ΔCEB=ΔABE
=>\(\widehat{CBE}=\widehat{AEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên CB//AE
c: MI//CE
CE//AB
Do đó: MI//AB
Ta có: MI//AB
AB\(\perp\)AC
Do đó: MI\(\perp\)AC
Xét ΔMAC có
MI là đường cao
MI là đường trung tuyến
Do đó: ΔMAC cân tại M
Ta có: ΔMAC cân tại M
mà MI là đường cao
nên MI là phân giác của \(\widehat{AMC}\)
d: Ta có: \(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)
\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)
mà \(\widehat{MAC}=\widehat{MCA}\)(ΔAMC cân tại M)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>ΔMAB cân tại M
Xét ΔMAB cân tại M có \(\widehat{MBA}=60^0\)
nên ΔMAB đều
=>\(\widehat{BAM}=60^0\)
e: Xét ΔECI vuông tại C và ΔBAI vuông tại A có
EC=BA
CI=AI
Do đó:ΔECI=ΔBAI
=>\(\widehat{EIC}=\widehat{BIA}\)
mà \(\widehat{EIC}+\widehat{EIA}=180^0\)(hai góc kề bù)
nên \(\widehat{EIA}+\widehat{BIA}=180^0\)
=>B,I,E thẳng hàng