Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a, xét tam giác aec và tam giác aed có
ae chung
ec=ed(gt)
ac=ad(gt)
=>tam giác aec = tam giác aed(ccc)
b. từ cma ta có tam giác aec = tam giác aed
=>góc cae=góc dac(2 góc tg ứng)
xét tam giác cai và tam giác dai có
ca=da(gt)
góc cae=góc dac(cmt)
ai chung
=>tam giác cai =tam giác dai(cgc)
=>ci=di(2 cạnh tg ứng)
a, \(\text{Xét }\Delta ADE\text{ có }\)
\(AC=AD\)
\(\Rightarrow\Delta ADE\text{cân tại A}\)
Xét \(\Delta ADE\) cân tại A có:
AE là là đường trung tuyến ứng với cạnh đáy CD
\(\Rightarrow\)AE là đường cao\(\Rightarrow\widehat{AEC}=\widehat{AED}=90\)
Xét \(\Delta ADE\) và \(\Delta ACE\) có:
\(\widehat{AEC}=\widehat{AED}=90\)
AE chung
\(EC=ED\)
\(\Rightarrow\Delta ADE=\Delta ACE\) (cặp cạnh góc vuông)
b,Từ câu a, ta có:
\(\Delta ACD\) cân tại A
Mà AE là đường trung tuyến ứng với cạnh đáy CD
\(\Rightarrow\) AE là tia phân giác của \(\widehat{CAD}\) \(\Rightarrow\widehat{CAI}=\widehat{DAI}\) \(\left(1\right)\)
Xét \(\Delta ACI\) và \(\Delta ADI\) có:
AC=AD
\(\widehat{CAI}=\widehat{DAI}\) \(\text{ theo }\left(1\right)\)
\(AE\) chung
\(\Rightarrow\Delta ACI=\Delta ADI\) \(\left(c-g-c\right)\)
\(\Rightarrow DI=CI\)
a: Xét ΔADB và ΔADE có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔADB=ΔADE
b: Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
c: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
mà AB<AC
nên DB<DC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Ta có hình vẽ:
a/ Xét tam giác ABE và tam giác ADE có
AE: cạnh chung
AB = AD (GT)
góc BAE = góc DAE (GT)
Vậy tam giác ABE = tam giác ADE (c.g.c)
b/ Giao điểm của BD và AE là H (Đã vẽ trên hình)
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Hai câu còn lại sai đề rồi bạn
b) Xét \(\Delta ACD\) và \(\Delta ACB\) có ;
\(AD=AB;\widehat{CAD}=\widehat{CAB}=90^o;AC:chung\)
\(\Rightarrow\) \(\Delta ACD\) = \(\Delta ACB\left(cgc\right)\)
c) Xét \(\Delta DME\) và \(\Delta CMB\) có :
\(\widehat{EDM}=\widehat{DCB}\left(slt\right);DM=CM;\widehat{DME}=\widehat{CMB}\) (đối đỉnh )
\(\Rightarrow\) \(\Delta DME\) = \(\Delta CMB\) ( gcg )
\(\Rightarrow DE=CB\)
mà BC = CD ( vì \(\Delta ACD\) = \(\Delta ACB\left(cgc\right)\) )
\(\Rightarrow\) DE = CD \(\Rightarrow\) \(\Delta DEC\) cân tại D
2. a) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC=4cm\)
a. tam giac ade va tam giac ace co
ad=ac
de=ce
ae chung
suy ra tam giac ade =tam giac ace(c.c.c)
b. tam giac ade = tam giac ace (chung minh tren)
suy ra goc cae =goc dae(2 goc tuong ung)
tam giac iac va tam giac iad co
ac=ad
goc cai = dai
ai chung
suy ra tam giac iac=iad(c.g.c}
suy ra di=ci
c sai de bai hay sao ay