Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)
Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính
\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)
Câu 1:
Xét ΔABC vuông tại A có
\(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{6}=\dfrac{4}{3}\)
=>\(AC=\dfrac{4}{3}\cdot6=8\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Câu 4:
a: Thay x=2 và y=5 vào y=(2m-1)x+3, ta được:
2(2m-1)+3=5
=>2(2m-1)=2
=>2m-1=1
=>2m=2
=>\(m=\dfrac{2}{2}=1\)
b: Khi m=1 thì \(y=\left(2\cdot1-1\right)x+3=x+3\)
Ban tu ve hinh nha
Goi O la tam duong tron ngoai tiep tam giac ABC , ke OD,OE,OF vuong goc voi AB,BC,AC
Do ABC la tam giac can nenA,O,E thang hang ( duong phan giac dong thoi la duong cao va trung tuyen )
=> AD=DB=15 cm , BE=EC=18 cm
Xet tam giac ABE vuong o E co \(AE=\sqrt{30^2-18^2}=24\) cm Dinh ly PYTAGO
Xet tam giac ADO vuong o D va tam giac AEB vuong o E co goc DAO= goc EAB
Suy ra tam giac ADO dong dang voi tam giac AEB (g-g)
=>\(\frac{AD}{AB}=\frac{OD}{BE}\) <=> \(\frac{15}{24}=\frac{OD}{18}=>OD=11,25cm\) =OF do ta giac abc can tai a
Xet tam giac ODB vuong tai D co \(OB=\sqrt{\left(11,25\right)^2+15^2}=18,75cm\) dinh ly pytago
Xet tam giac OBE vuong tai E co \(OE=\sqrt{\left(18,75\right)^2-18^2}=5.25cm\) Dinh ly PYTAGO
Vay khoang cach tu tam dong tron ngoai tiep tam giac ABC de 3 canh AB,AC,BC lan luot la 11,25 cm , 11,25 cm , 5,25 cm
STUDY WELL !!!
https://mathx.vn/uploads/ho-tro-hoc-tap/vip/images/Screenshot_38.png
a) Vẽ đường trung trực A H của cạnh B C . Qua trung điểm I của cạnh A B vẽ trung trực cạnh A B cắt A H tại O chính là tâm đường tròn ngoại tiếp của tam giác A B C Theo định lý pi ta go: A H 2 = A B 2 − B H 2 = 5 2 − 3 2 = 16 => A H = 4 Tam giác vuông A O I đồng dạng tam giác vuông A B H (chung góc A ) nên: A O A I = A B A H => R = A O = A B . A I A H = 5.2 , 5 4 = 3 , 125 b) Vì B D là đk nên tam giác A B D vuông A B D = 2 R = 6 , 26 . Theo Py ta go: A D 2 = B D 2 − A B 2 = 6 , 25 2 − 5 2 = 14 , 0625 => A D = 3 , 75 Tương tự tam giác C B D vuông C C D 2 = B D 2 − B C 2 = 6 , 25 2 − 6 2 = 3 , 0625 => C D = 1 , 75
a. Ta có :\(AB^2+AC^2=BC^2\) nên ABC vuông tại A
nên tâm đường tròn ngoại tiếp ABC là trung điểm BC
b. khi đó R = BC/2 =13/2 cm
khoảng cách từ tâm đến AC là :
\(d=\sqrt{R^2-\frac{AC^2}{4}}=\frac{5}{2}cm\)