\(\Delta ABC\)cân tại \(A\)và trung tuyến
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

A B C D M E

Lấy E là trung điểm của CD => DE=EC=1/2CD

Xét tam giác ADC: B là trung điểm của AD, E là trung điểm của CD => BE//AC và BE=1/2AC (T/c đường trung bình)

Ta có: M là trung điểm của AB => AM=BM=1/2AB. Mà AB=AC => AM=MB=1/2AC

=> BE=AM=BM=1/2AC 

BE//AC => ^EBC=^ACB (So le trong) => ^EBC=^ABC (^ACB=^ABC) hay ^EBC=^MBC

Xét tam giác BEC và tam giác BMC có:

BC chung

^EBC=^MBC      => Tam giác BEC=Tam giác BMC (c.g.c)

BM=BE

=> CE=CM (2 cạnh tương ứng) . Mà CE=1/2CD => CM=1/2CD hay CD=2CM (đpcm).

10 tháng 6 2017

hình (tự vẽ ha)

bài này phải kẻ thêm hình:

Từ D,E kẻ các đường thẳng vuông góc với BC lần lượt tại M,N

Xét \(\Delta⊥DBMvà\Delta⊥ECN:\)

\(BD=CE\left(gt\right)\)

\(\widehat{DBM}=\widehat{CEN}\left(\widehat{DBM}=\widehat{ACB}\left(gt\right);\widehat{ACB}=\widehat{CEN}\left(đ^2\right)\right).\)

\(=>\Delta⊥DBM=\Delta⊥ECN\left(ch-gn\right)\)(lưu ý :\(\:đ^2\)là đối đỉnh ha)

\(=>DM=NE\left(c-t-ư\right)\)

Do \(DM⊥BC;EN⊥BC=>DM\)// \(EN\)

\(=>\widehat{MDI}=\widehat{NEI}\left(slt\right)\)

\(=>\Delta⊥MDI=\Delta⊥NEI\left(cgv-gnk\right)\)

\(=>DI=IE\left(c-t-ư\right)\left(đpcm\right)\)

P/S bài này là làm theo cách D nằm gần hơn với B so với trung điểm của AB

còn nếu vẽ hình theo cách D nằm gần A hơn so với trung điểm của AB thì vẫn làm t.tự như trên thôi

10 tháng 6 2017

Bạn Witch Rose ơi!
\(\widehat{ACB}\)đâu có \(đ^2\)với \(\widehat{CEN}\)đâu nhỉ ?

19 tháng 3 2017

Bài 4:

(Bạn tự vẽ hình theo đề bài nhé!)

Theo đề bài, ta có:

BE = \(\dfrac{1}{3}BC\) => CE = \(\dfrac{2}{3}BC\)

BA=BD => BC là đường trung tuyến ΔACD

=> E là trọng tâm ΔACD

AE∩CD tại K (gt) => K là trung điểm CD => CK = DK

20 tháng 3 2017

\(\cap\) kí hiệu này là gì vậy bn ?

24 tháng 6 2020

tự kẻ hình nha

vì BG=1/3AB => AG=2/3 AB=> G là trọng tâm của tam giác ACE

mà CG giao AB tại G=> CG là trung tuyến và CG giao AE tại K

=> K là trung điểm của AE

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
2 tháng 4 2017

vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)

=>AM=1/2*BC=BM=CM

xét tam giácBMA và tam giác DMC có : 

AM=MD(gt)

góc BMA=góc DMC (đ đ)

BM=MC(gt)

=> 2 tam giác đó bằng nhau(c-g-c)

=>ACB=ADC(2GTU) 

AB=DC(2ctu)

ta có BM+CM =BC, AM+MD=AD

mà BM=CM, AM=MD

và  AM=BM=CM

=> BC=AD

xét tam giác BAC và tam giác DCA có :

BA=DC (cmt)

AC là cạnh chung 

BC=AD (cmt)

=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC

2 tháng 4 2017

b) tam giác MAC= tam giác MAE (cgc)=> AC= AE (2ctu)=>CAE cân tại A

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H

8 tháng 4 2018

A B C M D

a) Xét \(\Delta MAC,\Delta MDB\) có :

\(\left\{{}\begin{matrix}MA=MD\left(gt\right)\\\widehat{AMC}=\widehat{BMD}\left(\text{Đối đỉnh}\right)\\MC=MB\left(\text{AM là trung tuyến}\right)\end{matrix}\right.\)

=> \(\Delta MAC=\Delta MDB\left(c.g.c\right)\)

b) Xét \(\Delta BAC,\Delta DBA\) có :

\(\left\{{}\begin{matrix}BD=AC\left(\text{Suy ra từ câu a}\right)\\\widehat{BDA}=\widehat{ACB}\left(\text{Suy ra từ câu a}\right)\\AB:Chung\end{matrix}\right.\)

=> \(\Delta BAC=\Delta DBA\left(c.g.c\right)\)

=> \(\widehat{BAC}=\widehat{DBA}=90^o\) (2 góc tương ứng)

=> \(AB\perp BD\left(đpcm\right)\)

c) Từ \(\Delta BAC=\Delta DBA\left(c.g.c\right)\) suy ra :

\(BC=AD\) (2 cạnh tương ứng)

Mà : \(AM=\dfrac{AD}{2}\)

\(\Rightarrow AM=\dfrac{BC}{2}\)

=> đpcm.

13 tháng 5 2019

a) Do DE vuông góc với BC => tam giác BDE vuông

Xét hai tam giác vuông : tam giác BAD và tam giác BED có :

\(\widehat{ABD}=\widehat{EBD}\)( do BD là tia p/g của \(\widehat{ABE}\))

AD là cạnh chung

nên tam giác BAD = tam giác BED ( cạnh huyền - góc nhọn )