Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình (tự vẽ ha)
bài này phải kẻ thêm hình:
Từ D,E kẻ các đường thẳng vuông góc với BC lần lượt tại M,N
Xét \(\Delta⊥DBMvà\Delta⊥ECN:\)
\(BD=CE\left(gt\right)\)
\(\widehat{DBM}=\widehat{CEN}\left(\widehat{DBM}=\widehat{ACB}\left(gt\right);\widehat{ACB}=\widehat{CEN}\left(đ^2\right)\right).\)
\(=>\Delta⊥DBM=\Delta⊥ECN\left(ch-gn\right)\)(lưu ý :\(\:đ^2\)là đối đỉnh ha)
\(=>DM=NE\left(c-t-ư\right)\)
Do \(DM⊥BC;EN⊥BC=>DM\)// \(EN\)
\(=>\widehat{MDI}=\widehat{NEI}\left(slt\right)\)
\(=>\Delta⊥MDI=\Delta⊥NEI\left(cgv-gnk\right)\)
\(=>DI=IE\left(c-t-ư\right)\left(đpcm\right)\)
P/S bài này là làm theo cách D nằm gần hơn với B so với trung điểm của AB
còn nếu vẽ hình theo cách D nằm gần A hơn so với trung điểm của AB thì vẫn làm t.tự như trên thôi
Bạn Witch Rose ơi!
\(\widehat{ACB}\)đâu có \(đ^2\)với \(\widehat{CEN}\)đâu nhỉ ?
Bài 4:
(Bạn tự vẽ hình theo đề bài nhé!)
Theo đề bài, ta có:
BE = \(\dfrac{1}{3}BC\) => CE = \(\dfrac{2}{3}BC\)
BA=BD => BC là đường trung tuyến ΔACD
=> E là trọng tâm ΔACD
Mà AE∩CD tại K (gt) => K là trung điểm CD => CK = DK
tự kẻ hình nha
vì BG=1/3AB => AG=2/3 AB=> G là trọng tâm của tam giác ACE
mà CG giao AB tại G=> CG là trung tuyến và CG giao AE tại K
=> K là trung điểm của AE
vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)
=>AM=1/2*BC=BM=CM
xét tam giácBMA và tam giác DMC có :
AM=MD(gt)
góc BMA=góc DMC (đ đ)
BM=MC(gt)
=> 2 tam giác đó bằng nhau(c-g-c)
=>ACB=ADC(2GTU)
AB=DC(2ctu)
ta có BM+CM =BC, AM+MD=AD
mà BM=CM, AM=MD
và AM=BM=CM
=> BC=AD
xét tam giác BAC và tam giác DCA có :
BA=DC (cmt)
AC là cạnh chung
BC=AD (cmt)
=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC
a) Xét tg ABH và ACK có :
AB=AC(tg ABC cân tại A)
\(\widehat{A}-chung\)
\(\widehat{AHB}=\widehat{AKC}=90^o\)
=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)
b) Do tg ABH=ACK (cmt)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tg OBC cân tại O
=> OB=OC (đccm)
c) Do : AB=AC (tg ABC cân tại A)
MB=NC(gt)
=> AB+BM=AC+CN
=> AM=AN
=> Tg AMN cân tại A
\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
- Do tg ABH=ACK (cmt)
=> AK=AH
=> Tg AKH cân tại A
\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)
Mà chúng là 2 góc đồng vị
=> KH//MN (đccm)
#H
A B C M D
a) Xét \(\Delta MAC,\Delta MDB\) có :
\(\left\{{}\begin{matrix}MA=MD\left(gt\right)\\\widehat{AMC}=\widehat{BMD}\left(\text{Đối đỉnh}\right)\\MC=MB\left(\text{AM là trung tuyến}\right)\end{matrix}\right.\)
=> \(\Delta MAC=\Delta MDB\left(c.g.c\right)\)
b) Xét \(\Delta BAC,\Delta DBA\) có :
\(\left\{{}\begin{matrix}BD=AC\left(\text{Suy ra từ câu a}\right)\\\widehat{BDA}=\widehat{ACB}\left(\text{Suy ra từ câu a}\right)\\AB:Chung\end{matrix}\right.\)
=> \(\Delta BAC=\Delta DBA\left(c.g.c\right)\)
=> \(\widehat{BAC}=\widehat{DBA}=90^o\) (2 góc tương ứng)
=> \(AB\perp BD\left(đpcm\right)\)
c) Từ \(\Delta BAC=\Delta DBA\left(c.g.c\right)\) suy ra :
\(BC=AD\) (2 cạnh tương ứng)
Mà : \(AM=\dfrac{AD}{2}\)
\(\Rightarrow AM=\dfrac{BC}{2}\)
=> đpcm.
a) Do DE vuông góc với BC => tam giác BDE vuông
Xét hai tam giác vuông : tam giác BAD và tam giác BED có :
\(\widehat{ABD}=\widehat{EBD}\)( do BD là tia p/g của \(\widehat{ABE}\))
AD là cạnh chung
nên tam giác BAD = tam giác BED ( cạnh huyền - góc nhọn )
A B C D M E
Lấy E là trung điểm của CD => DE=EC=1/2CD
Xét tam giác ADC: B là trung điểm của AD, E là trung điểm của CD => BE//AC và BE=1/2AC (T/c đường trung bình)
Ta có: M là trung điểm của AB => AM=BM=1/2AB. Mà AB=AC => AM=MB=1/2AC
=> BE=AM=BM=1/2AC
BE//AC => ^EBC=^ACB (So le trong) => ^EBC=^ABC (^ACB=^ABC) hay ^EBC=^MBC
Xét tam giác BEC và tam giác BMC có:
BC chung
^EBC=^MBC => Tam giác BEC=Tam giác BMC (c.g.c)
BM=BE
=> CE=CM (2 cạnh tương ứng) . Mà CE=1/2CD => CM=1/2CD hay CD=2CM (đpcm).