\(\Delta ABC\)cân tại A. H là trung điểm của Bc. Gọi I là hình chiếu của H trên AC và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

a) Xét ΔAHC và ΔHIC có:

ˆAHC=ˆHIC=90

ˆACH:chung

 ΔAHC  ΔHIC

 AH/HI=HC/IC

⇔AH.IC=HC.HI

b)Có AH/HI=HC/IC ( cmt)

mà IH = 2HO ( O là trung điểm của HI);

BC= 2HC ( H là trung điểm của BC )

=> AH/2HO=BC/2IC

=> AH/HO=BC/IC(1)

Mặt khác ˆAHO=ˆICB( cùng phụ góc IHC ) (2)

Từ (1) và (2) => Δ BIC  Δ AOH ( c.g.c)

c) Gọi D là giao điểm của AH và BI ; E là giao điểm của AO và BI

Vì ΔBIC  Δ AOH (cmb) => ˆIBH=ˆHAO

Lại có ˆBDH=ˆADE ( đối đỉnh )

=>ˆIBH+ˆBDH=ˆHAO+ˆADE

mà ˆIBH+ˆBDH=90

⇒AO⊥BI(đpcm)

5 tháng 3 2019

b, qua H kẻ HM//BI=> M là trung điểm IC
xét tam giác AHO và HCM
ta có AHO^ = HCM^
và HA/HO = 2HA/HI = 2AC/AH (do AIH ~ AHC)
CH/CM = 2CH/CI = 2AC/AH (do CHI ~ CAH)
=> AHO ~ HCM
=> HAO^ = CHM^ (*)
mà CHM^ = HBI^ (đồng vị) (**)
tỪ * và ** => HAO^ = HBI^ =>tứ giác BAOH nội tiếp
=> AHB^ = AIB^ = 90 hay AO vuông BI (đpcm)

a) Xét \(\Delta AHC\)\(\Delta HIC\) có:

\(\widehat{AHC}=\widehat{HIC}=90^o\)

\(\widehat{ACH}:chung\)

\(\Rightarrow\) \(\Delta AHC\) \(\sim\) \(\Delta HIC\)

\(\Rightarrow\) \(\frac{AH}{HI}=\frac{HC}{IC}\Leftrightarrow AH.IC=HC.HI\)

b)Có \(\frac{AH}{HI}=\frac{HC}{IC}\) ( cmt) mà IH = 2HO ( O là trung điểm của HI); BC= 2HC ( H là trung điểm của BC )

=> \(\frac{AH}{2HO}=\frac{BC}{2IC}\)

=> \(\frac{AH}{HO}=\frac{BC}{IC}\left(1\right)\)

Mặt khác \(\widehat{AHO}=\widehat{ICB}\)( cùng phụ góc IHC ) (2)

Từ (1) và (2) => Δ BIC \(\sim\) Δ AOH ( c.g.c)

c) Gọi D là giao điểm của AH và BI ; E là giao điểm của AO và BI

Vì ΔBIC \(\sim\) Δ AOH (cmb) => \(\widehat{IBH}=\widehat{HAO}\)

Lại có \(\widehat{BDH}=\widehat{ADE}\) ( đối đỉnh )

=>\(\widehat{IBH}+\widehat{BDH}=\widehat{HAO}+\widehat{ADE}\)

\(\widehat{IBH}+\widehat{BDH}=90^o\Rightarrow\widehat{HAO}+\widehat{ADE}=90^o\Rightarrow AO\perp BI\left(đpcm\right)\)

21 tháng 8 2019

giup mình với mai đi hc rồi

28 tháng 4 2021

Cần ý d :>

4 tháng 10 2020

Gọi N là trung điểm của EC => FN là đường trung bình của ∆HEC => FN // NC 

Mà HC⊥AH nên FN⊥AH

∆AHN có hai đường cao HE và NF cắt nhau tại F nên F là trực tâm của tam giác => AF⊥HN (1)

∆ABC cân tại A nên AH là đường cao cũng là trung tuyến => BH = HC => HN là đường trung bình của ∆BEC => HN // BE  (2)

Từ (1) và (2) suy ra AF⊥BE (đpcm)