Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a/
Xét tg BCD và tg CBD có
BD=CE (gt)
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân ABC)
BC chung
=> tg BCD = tg CBD (c.g.c) => CD=BE (đpcm)
b/
tg BCD = tg CBD (cmt) \(\Rightarrow\widehat{IBC}=\widehat{ICB}\)
=> tg IBC cân tại I => IB=IC
Xét tg ABI và tg ACI có
IB=IC (cmt)
AI chung
AB=AC (cạnh bên tg cân ABC)
=> tg ABI = tg ACI (c.c.c) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)
=> AI là phân giác \(\widehat{A}\)
=> AI là trung trực của BC (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Ta có
AD=AB-BD
AE=AC-CE
Mà AB=AC; BD=CE
=> AD=AE
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\) => DE//BC (Talet đảo trong tam giác)
d/
Từ E đựng đường thẳng // với AB cắt BC tại G
ta có
\(\widehat{EGC}=\widehat{ABC}\) (góc đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{EGC}=\widehat{ACB}\) => tg EGC cân tại E => GE=CE (cạnh bên tg cân)
Mà BD=CE (gt)
=> GE=BD mà BD=BF => GE=BF
Ta có
GE//AB => GE//BF
=> BEGF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
=> KE=KF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> K là trung điểm của EF
Nếu I là trung điểm DE rồi thì cần gì phải cm D,I,E thẳng hàng nữa ????
a) Vì AM = MB và AN =NC
=> MN là đường trung bình cảu tam giác ABC
=> MN // BC
=> Tứ giác BCNM là hình thang
Vì tam giác ABC cân tại A
=> C = B
=> hình thang BCNM cân
b) ABD + ABE = 180 ( kề bù )
ACE + ACD = 180 ( kề bù )
mà ABE = ACD ( tam giác ABC cân tại A )
=> ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( tam giác ABC cân tại A )
ABD = ACE ( cm trên )
BD = CE ( GT )
=> tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( 2 cạnh tương ứng )
=> tam giác ADE cân tại A
Còn 2 phần cuối mk đang nghĩ
Xét ΔABC có
DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{AB}\)
hay DE=BD
mà BD=CF
nên DE=CF
Xét tứ giác DEFC có
DE//CF
DE=CF
Do đó: DEFC là hình bình hành
Suy ra: Hai đường chéo DF và EC cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của EC
nên I là trung điểm của DF