Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(AB^2+AC^2=8^2+15^2=289=17^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A.
Ta có: \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.BC.AH\)
\(\Leftrightarrow BC.AH=AB.AC=8.15=120\)
\(\Leftrightarrow AH=\dfrac{120}{BC}=\dfrac{120}{17}\)
Xét \(\Delta AHC\) vuông tại H có:
\(HC^2=AC^2-AH^2=15^2-\dfrac{120^2}{17^2}=\dfrac{50625}{289}\)
\(\Rightarrow HC=\dfrac{225}{17}\)
a) Xét \(\Delta ABC\) vuông tại A
\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{}\Rightarrow AB=6cm\)
b) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)
\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)
c) Có : BC + DC > BD
mà BM = 2 BD ; DC = AB
\(\Rightarrow\) DC + BC > 2BM
A B C H D E
a) Xét \(\Delta ABC\) có :
AB = AC (gt)
=> \(\Delta ABC\) cân tại A
\(\Delta ABH,\Delta ACH\) có :
\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)
\(AB=AC\left(gt\right)\)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)
=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)
b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (Định lí PITAGO)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
c) Xét \(\Delta DBH,\Delta ECH\) có :
\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)
\(BH=CH\)(cm câu a)
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
=> \(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)
=> \(HD=HC\) (2 cạnh tương ứng)
=> \(\Delta HDE\) cân tại H.
A B C E M
a, xét tam giác AMB và tam giác EMC có :
AM = ME (gt)
góc AMB = góc EMC (hai góc đối đỉnh)
BM = MC (gt)
\(\Rightarrow\)\(\Delta AMB=\Delta EMC\)(c-g-c)
b,xét tam giác BME và tam giác CMA có :
BM = MC (gt)
AM = ME (gt)
góc AMB = góc CME (hai góc đối đỉnh )
\(\Rightarrow\Delta BME=\Delta CMA\)(c-g-c)
\(\Rightarrow\widehat{ACM}=\widehat{BME}\)(hai góc tương ứng)
\(\Rightarrow AC\)// BE(đpcm)
c,xét tam giác ABC và tam giác ECB có :
AM = ME (gt)
BC là cạnh chung
góc ACB = góc CBE (cmt)
\(\Rightarrow\Delta ABC=\Delta ECB\)(c-g-c)
\(\Rightarrow\widehat{BAC}=\widehat{BEC}=90^0\) (hai góc tương ứng)
\(\Rightarrow\Delta BEC\)vuông tại E
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
\(AB^2+BC^2=8^2+15^2=64+225=289\)
\(AC^2=17^2=289\)
\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B