K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2022

a, Xét tam giác AHC và tam giác BAC 

^C _ chung 

^AHC = ^BAC = 900

Vậy tam giác AHC ~ tam giác BAC (g.g) 

b, Xét tam giác AHB và tam giác CHA 

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB~ tam giác CHA (g.g) 

c,Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=40cm\)

\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)( tỉ số đồng dạng của a ) 

\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}cm\)

\(\dfrac{AH}{CH}=\dfrac{AB}{AC}\)( tỉ số đồng dạng của b ) 

\(CH=\dfrac{AH.AC}{AB}=\dfrac{128}{5}cm\)

\(\rightarrow BH=BC-CH=\dfrac{72}{5}cm\)

8 tháng 4 2019
https://i.imgur.com/nv7fR1F.jpg
2 tháng 4 2021

undefined

1 tháng 5 2019

sao H lại thuộc AC

1 tháng 5 2019

D thuộc ac

mình ghi nhầm

AH
Akai Haruma
Giáo viên
16 tháng 4 2023

Hạ AH thế nào với BC vậy bạn?

16 tháng 4 2023

vuông góc bạn ạ

 

a: \(P=\dfrac{32+32+24}{2}=16+16+8=32+8=40\left(cm\right)\)

\(S=\sqrt{40\cdot\left(40-32\right)\left(40-32\right)\cdot\left(40-24\right)}=64\sqrt{10}\)

\(\dfrac{1}{2}\cdot BK\cdot AC=64\sqrt{10}\)

\(\Leftrightarrow BK\cdot32\cdot\dfrac{1}{2}=64\sqrt{10}\)

=>\(BK=4\sqrt{10}\left(cm\right)\)

b: \(AK=\sqrt{32^2-\left(4\sqrt{10}\right)^2}=12\sqrt{6}\left(cm\right)\)

BH=CH=12cm

=>\(AH=\sqrt{32^2-12^2}=4\sqrt{55}\left(cm\right)\)

Xét ΔAKD vuông tại K và ΔAHC vuông tại H có

góc KAD chung

=>ΔAKD đồng dạng với ΔAHC
=>KD/HC=AK/AH

=>\(\dfrac{KD}{12}=\dfrac{12\sqrt{6}}{4\sqrt{55}}\)

=>\(KD=\dfrac{36\sqrt{6}}{\sqrt{55}}\left(cm\right)\)

 

a: \(P=\dfrac{32+32+24}{2}=16+16+8=32+8=40\left(cm\right)\)

\(S=\sqrt{40\cdot\left(40-32\right)\left(40-32\right)\cdot\left(40-24\right)}=64\sqrt{10}\)

\(\dfrac{1}{2}\cdot BK\cdot AC=64\sqrt{10}\)

\(\Leftrightarrow BK\cdot32\cdot\dfrac{1}{2}=64\sqrt{10}\)

=>\(BK=4\sqrt{10}\left(cm\right)\)

b: \(AK=\sqrt{32^2-\left(4\sqrt{10}\right)^2}=12\sqrt{6}\left(cm\right)\)

BH=CH=12cm

=>\(AH=\sqrt{32^2-12^2}=4\sqrt{55}\left(cm\right)\)

Xét ΔAKD vuông tại K và ΔAHC vuông tại H có

góc KAD chung

=>ΔAKD đồng dạng với ΔAHC
=>KD/HC=AK/AH

=>\(\dfrac{KD}{12}=\dfrac{12\sqrt{6}}{4\sqrt{55}}\)

=>\(KD=\dfrac{36\sqrt{6}}{\sqrt{55}}\left(cm\right)\)

 

4 tháng 12 2015

đoạn AB lon hon nha ban

13 tháng 1 2016

đầu bài đúng! 

SABC=BH.AC/2            SABC=CK.AB/2      Suy ra BH.AC=CK.AB    =>    AC/AB=CK/BH.

Do AC>AB nên AC/AB>1 dẫn tới CK/BH>1 

Kết luận: CK>BH (đpcm)

10 tháng 4 2017

bạn nào giúp mình với 

10 tháng 4 2017

bạn cx k pk lm à?