Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\) có BK là tia phân giác
\(\Rightarrow\) \(\dfrac{KC}{KA}\) = \(\dfrac{BC}{BA}\) (1)
\(\Delta AHC\) có AD là tia phân giác
\(\Rightarrow\) \(\dfrac{DC}{DH}\) = \(\dfrac{AC}{AH}\) (2)
Xét \(\Delta ABC\) và \(\Delta HBA\) có:
góc B chung
góc BAC = BHA(=90)
\(\Rightarrow\) \(\Delta ABC\)\(\sim\)\(\Delta\)HBA (g-g)
\(\Rightarrow\) \(\dfrac{BC}{BA}\) = \(\dfrac{AC}{HA}\) (3)
Từ (1)(2)(3)\(\Rightarrow\)\(\dfrac{KC}{KA}\) = \(\dfrac{DC}{DH}\)
\(\Rightarrow\) KD//AH
hình bạn tự vẽ nhá
a) Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
b) ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)
=> AH = 9,6 cm
Ta có : AD là phân giác của A^
=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)
=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)
=> 16BD = 240 - 12BD
=> 28BD = 240
=> BD = 8,5 cm
hình bạn tự vẽ ak nghen!!!
a)
Xét tam giác ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
=>\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)