Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).
\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).
Xét \(\Delta PAB\)có:
\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).
\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).
\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).
\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).
\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).
Ta lại có:
\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).
\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).
Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).
Xét \(\Delta MAP\)và \(\Delta PAB\)có:
\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).
\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).
\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).
\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).
\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).
b,Xét tam giác ABD và tam giác HBI có :
BAD=BHI (=90 độ)
B1=B2(p/g)
suy ra : 2 tam giác đồng dạng và lập tỉ số AB/BD=HB/BI
suy ra :AB.BI=BD.HB(đccm)
+Vì trong tam giác ABD có :góc BDA + B1 =90dộ
BIH có :góc BIH +B2 +90độ
mà B1=B2
suy ra :góc BDA =AID . Suy ra tam giác AID cân tại A .