Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\Delta ABC\) vuông tại A (giả thiết).
\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).
\(\Rightarrow6^2+8^2=BC^2\)(thay số).
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
b: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc ABC chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
c: IH/IA=BH/BA
AD/DC=BA/BC
BH/AB=BA/BC
=>IH/IA=AD/DC
a) Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
=> BC = 10 (cm)
Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (t/c đường p/g)
=> \(\dfrac{AD}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AD}{3}=\dfrac{DC}{5}\)
Áp dụng DTSBN ta có:
\(\dfrac{AD}{3}=\dfrac{DC}{5}=\dfrac{AD+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{3}=1\Rightarrow AD=3\\\dfrac{DC}{5}=1\Rightarrow DC=5\end{matrix}\right.\)
b) ΔABH và ΔCBA (bạn tự xét nhé) theo trường hợp g-g
=> \(\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)
Xét ΔABI và ΔCBD ta có:
\(\widehat{ABI}=\widehat{DBC}\) (BD là đường p/g)
\(\widehat{BAI}=\widehat{BCD}\) (cmt)
=> ΔABI ~ ΔCBD (g-g)
c) Xét ΔABH ta có:
BI là đường p/g (gt)
=> \(\dfrac{IH}{IA}=\dfrac{BH}{AB}\) (t/c đường p/g)
Ta có: \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (cm a)
\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (ΔABH ~ ΔCBA)
=> đpcm
a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có
góc B chung ( kí hiệu góc nhé :D)
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v
TỰ VẼ HÌNH NHA
a) xét tám giác ABC và tam giác HBA
góc A= góc H (=90 độ)
góc A :chung
=> tam giác ABC ~ tam giác HBA (g-g)
a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)
?????????????