\(\Delta ABC\), vẽ về phía ngài \(\Delta ABC\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

a) ΔABD=ΔEBDΔABD=ΔEBD

b) AH//DE;ΔADIAH//DE;ΔADI cân 

c) AE là tia phân giác của ˆHACHAC^

d) DC = 2AI

Giải thích các bước giải:

a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB

10 tháng 7 2017

Bài 1: Dễ

Bài 2: a sai đề.

Đợi em tắm đã rùi làm nha :)

10 tháng 7 2017

Bài 1:

A' B' C' A B C H H'

Xét tam giác ABC và tam giác A'B'C' đều ta có:

\(\widehat{ABC}=\widehat{A'B'C'}=60^o\)(theo tính chất của tam giác đều)

\(\Rightarrow\widehat{HAB}=\widehat{H'A'B'}\)

Xét tam giác \(ABH\) và tam giác \(A'B'H'\) ta có:

\(\widehat{AHB}=\widehat{A'H'B'}\left(=90^o\right);AH=A'H'\left(gt\right);\widehat{HAB}=\widehat{H'A'B'}\left(cmt\right)\)

Do đó tam giác ABH= tam giác A'B'H'(g.c.g)

=> AB=A'B'=> AB=AC=CB=A'B'=A'C'=B'C'(theo tính chất của tam giác đều)

Xét tam giác ABC và tam giác A'B'C' ta có:

\(AB=A'B'\left(cmt\right);\widehat{ABC}=\widehat{A'B'C'}\left(=60^o\right);BC=B'C'\left(cmt\right)\)

Do đó tam giác ABC= tam giác A'B'C'(c.g.c)(đpcm)

Xong =))