\(\Delta ABC\), trung tuyến AM. G là trọng tâm. Một đường thẳng đi qua G cắt AB, AC,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

bn tự vẽ hình đc ko?

Gọi M là trung điểm BC thì A, G, M thẳng hàng và AG = 2GM

Từ B và C vẽ 2 đường thẳng song song với EF cắt AM lần lượt tại D và N.

Ta có  \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}\)

Ta cần c/m DG + NG = AG

Dễ dàng c/m đc  \(\Delta BDM=\Delta CNM\)  (g-c-g)

=> DM = MN

Ta có DG + NG = DG + DG + DM + MN = (DG + DM) + (DG + MN) = 2(DG + DM) = 2GM = AG

Do đó  \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}=\frac{DG+NG}{AG}=\frac{AG}{AG}=1\)

4 tháng 3 2020

Heeeeeeeeeeey

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:

Bạn tự vẽ hình nhé.

a) Ta thấy \(\widehat{MFC}=90^0-\widehat{MAF}(1)\)

VÌ $AM$ là trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM=MC\)

\(\Rightarrow \triangle AMB\) cân tại $M$

\(\Rightarrow \widehat{MBE}=\widehat{MBA}=\widehat{MAB}=90^0-\widehat{MAF}(2)\)

Từ \((1);(2)\Rightarrow \widehat{MFC}=\widehat{MBE}\)

Xét tam giác $MBE$ và $MFC$ có:

\(\left\{\begin{matrix} \widehat{MBE}=\widehat{MFC}\\ \widehat{BME}=\widehat{FMC}(\text{đối đỉnh})\end{matrix}\right.\) \(\Rightarrow \triangle MBE\sim \triangle MFC(g.g)\)

b) Theo phần a thì \(\widehat{MBE}=\widehat{MFC}\Leftrightarrow \widehat{ABC}=\widehat{AFE}\)

Xét tam giác $ABC$ và $AFE$ có:

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{AFE}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle AFE(g.g)\)

\(\Rightarrow \frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

c)

Do $AH,AM$ là hai đường cao tương ứng đỉnh $A$ của hai tam giác đồng dạng $ABC$ và $AFE$ nên \(\frac{AH}{AM}=\frac{AB}{AF}=\frac{AC}{AE}\)

Do đó \(\frac{S_{ABC}}{S_{AEF}}=\frac{\frac{AB.AC}{2}}{\frac{AE.AF}{2}}=\frac{AB}{AF}.\frac{AC}{AE}=\left(\frac{AH}{AM}\right)^2(*)\)

Xét tam giác $AMI$ và $AHM$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{AMI}=\widehat{AHM}=90^0\end{matrix}\right.\Rightarrow \triangle AMI\sim \triangle AHM(g.g)\)

\(\Rightarrow \frac{AM}{AI}=\frac{AH}{AM}(**)\)

Từ \((*);(**)\Rightarrow \frac{S_{ABC}}{S_{AEF}}=\left(\frac{AM}{AI}\right)^2\) (đpcm)