\(\Delta ABC\), qua A vẽ đường thẳng d sao cho tổng khoảng cách từ  và C đến  d là nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

BH vuong goc voi AM=>BH=<BM

CE vuong goc voi AM=>CE=<CM

=>BH+CE=<BM+CM

=>d=<BC

Dau bang xay ra khi BH=BM; CE=CM

=>AM vuong goc voi BC

10 tháng 8 2018

A B C M N I a b

a.Tam giác ABC có AB=AC vậy tâm giác ABC là tam giác cân

Vậy xét tam giác AMB và AMC có AB=AC (gt)

                                                  góc B=góc C ( tam giác cân)

                                                  BM=CM (gt)

Vậy tam giác AMB=tam giác AMC (c.g.c)

b.

Vì tam giác AMB= tam giác AMC nên góc AMC= góc AMB mà AMB + AMC = 180 ( kề bù)

Vậy suy ra AMB=AMC=90 độ vậy AM vuông góc BC

Ta có AM vuông góc BC

        AM vuông góc a

Vậy BC//a

c.

Ta có  góc NAC=góc ACM( AN//MC)

          AC chung

         góc NCA= góc MAC ( AM// NC)

Vậy tam giác AMC= tam giác CNA (g.c.g)

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân