Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a. Trong một tam giác có ít nhất hai góc nhọn, giả sử là B và C. Kẻ AH vuông góc với BC, thì H nằm giữa B,C. Ta đặt \(h=AH,x=HC\) . Theo định lý Pi-ta-go cho tam giác AHC ta có \(h^2+x^2=b^2.\) (1)
Mặt khác \(BH=a-x\to\left(a-x\right)^2+h^2=AH^2+BH^2=AB^2=c^2\to\left(a-x\right)^2+h^2=c^2.\) (2)
Trừ (1),(2) cho nhau ta được \(x^2-\left(a-x\right)^2=b^2-c^2\to x=\frac{b^2-c^2+a^2}{2a}.\)
Vì vậy \(h^2=b^2-x^2=b^2-\left(\frac{a^2+b^2-c^2}{2a}\right)^2=\frac{\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)}{4a^2}\)
Thành thử, \(S_{\Delta ABC}=\frac{1}{2}\cdot AH\cdot BC=\frac{1}{2}\cdot a\cdot\sqrt{\frac{\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)}{4a^2}}\)
\(\to S_{\Delta ABC}=\frac{1}{4}\cdot\sqrt{\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}.\)
Câu b. (Ở đây thiếu giải thích \(m_a\) là độ dài trung tuyến kẻ từ A.
Không mất tính tổng quát giả sử \(AB\le AC\), gọi M là trung điểm BC, thì H nằm giữa B,M. Theo trên ta có
\(HM=HC-CM=x-\frac{a}{2}=\frac{b^2-c^2+a^2}{2a}-\frac{a}{2}=\frac{b^2-c^2}{2a}.\)
Vậy theo định lý Pitago ta có \(AM^2=AH^2+HM^2=h^2+AM^2=b^2-\left(\frac{a^2+b^2-c^2}{2a}\right)^2+\left(\frac{b^2-c^2}{2a}\right)^2=\)
\(\to AM^2=b^2-\frac{a^4+2a^2\left(b^2-c^2\right)}{4a^2}=b^2-\frac{a^2+2b^2-2c^2}{4}=\frac{2b^2+2c^2-a^2}{4}.\) (ĐPCM)
Bài 2. A B C M D E F
Áp dụng định lí Pytago ta có :
\(AM^2=AF^2+FM^2=AE^2+ME^2\)
\(BM^2=BD^2+MD^2=MF^2+BF^2\)
\(MC^2=ME^2+EC^2=MD^2+DC^2\)
\(\Rightarrow AF^2+FM^2+BD^2+MD^2+ME^2+EC^2=AE^2+ME^2+MF^2+BF^2+MD^2+DC^2\)
\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)