\(\Delta\) ABC co \(\widehat{A}-\widehat{B}=90^0.\)Vẽ Đườ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2022

b: Vì góc ABC là góc ngoài cua ΔAHB

nên góc ABC=góc AHB+góc HAB=90 độ+góc HAB

Xét ΔHAC vuông tại H có góc HAC+góc ACB=90 độ

=>góc ACB=90 độ-góc HAC

c: 1/2(góc ABC-góc ACB)

=1/2(180 độ-góc ABH-90 độ+góc HAC)

=1/2(90 độ-góc ABH+góc HAC)

=góc DAH

30 tháng 10 2018

a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)

\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)

Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM

b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)

=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)

Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)

=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)

Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)

\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)

\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)

\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)

c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)

\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)

8 tháng 10 2019

Violympic toán 7

Bn có thể cm bằng cách khác là chứng minh nó song song => nó bằng nhau vì đồng vị.

9 tháng 10 2019

Này Băng Băng 2k6, bn có thể giải chứng minh \(\widehat{HBM}=\widehat{KMC}\)bằng cách chứng minh hai đường thẳng song song => nó bằng nhau vì đồng cị được ko chứ giải theo cách tam giác mk chưa đc hok

2 tháng 8 2019

a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:

          \(BH:\)cạnh chung

          \(AH=DB\)(gt)

Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)

b) Vì  \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên \(AB//DH\)

c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)

hay \(\widehat{ABC}=55^0\)

\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)

Vậy \(\widehat{ACB}=35^0\)

29 tháng 11 2018

A B C H D 35°

GT| \(\widehat{BAC}=90\text{°}\)
\(AH\perp BC\)tại H 
Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH 
\(\widehat{BAH}=35\text{°}\)
KL | 
AB // DH 

Xét \(\Delta AHB\&\Delta DBH\) ta có :

AH = BD ( hình vẽ )

BH cạnh chung 

AB = HD ( gt )

=> \(\Delta AHB=\Delta DBH\)( c.c.c )

b) Ta có :

\(\Delta AHB=\Delta DBH\) ( cmt )

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT 

=> AB // DH