Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Trên tia đối AB lấy I sao cho AI = AB
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AC=3AB nên AB=AD=DE=EC=AI
Lấy M thuộc IN sao cho IM = AD
Ta có tứ giác IADM có AD//IM, AD=IM nên ADMI là hình bình hành
Hình bình hành ADMI có 1 góc vuông, 2 cạnh kề AD=AI nên ADMI là hình vuông
nên AD=DM=MI=AI
Xét tam giác BIM vuông tại I và tam giác MNC vuông tại N có:
BI=MN( do 2.AB=2.DE)
IM=NC
=> Tam giác BIM= tam giác MNC
=>BM=CM và góc MBI = góc CMN
Xét tam giác BIM vuông tại I và tam giác EAB vuông tại A có:
BI=EA( do 2.AB=2.DE)
IM=AB
=> Tam giác BIM= tam giác EAB
=>góc MBI= góc AEB
Ta có: tam giác BMC vuông tại M
Lại có BM=CM nên tam giác BMC vuông cân tại M
=> Góc MCB=45 độ => ACB+MCD=45 độ
Mà:
MCD=CMN=MBI=AEB =>ACB+AEB=45 độ
Cách 1:
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Cách 2:
Đặt AB = a
ta có: BD = a√2
Do DE/DB = DB/DC = 1/√2
=> Δ DBC đồng dạng Δ DEB (c - g - c)
=> ^DBC = ^DEB
Δ BDC có ^ADB góc ngoài
=> ^ADB = ^DCB + ^DBC
hay ^ACB + ^AEB = 45o
Cách 3
ta có:
tanAEB = AB/AE = 1/2
tanACB = AB/AC = 1/3
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB)
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o
Vậy ^ACB + ^AEB = 45o
- Trên tia đối AB lấy I sao cho AI = AB
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD
Ta có hình vuông IAMD => IA = IM = MD = DA
Xét tam giác MBI và tam giác CMN
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vìIA=1/3 IN và IA = IM => IM=1/2 MN)
=> góc I = góc M =90 độ (gt)
<=> tg MBI = tg CMI (c - g - c)
=> góc MBI = góc CMN ; BM = CM ⇒ BMC cân ở M
Xét tg BIM và tg EAB
AB = MI
AE = BI
góc I= góc A =90 độ
<=> tg BIM = tg EAB (c - g - c)
=>góc MBI = góc AEB (góc tương ứng)
Ta có:
góc IMB +góc BAM = 90 độ
Mà: góc MBA = góc CMN
=> góc IBM + CMN = 90 độ
=> tg BMC vuông ở M (2)
Từ (1) và (2)
=> Tam giac MCB vuông cân ở M.
=> Góc MCB = 45 độ hay góc ACB+MCD =45 độ
Lại có:
Góc MCD=CMN=MBI=AEB
=> góc ACB+AEB=45 độ (Đpcm)
tg ABD vuông cân tại A => ^ADB = 45o và BD = AD.căn2 => BD/AD = căn2 => BD/DE = căn2 (1)
Lại có DC/BD = 2AD/(AD.căn2) = căn2 (2)
(1) và (2) => BD/DE = DC/BD => tgBDE ~ tgCDB (có góc D chung xen giữa 2 cạnh tương ứng tỷ
lệ) => ^DBE = ^DCB = ^ACB
Mà ^AEB + ^DEB = ^ADB = 45o ( góc ngoài = tổng 2 góc trong kô kề) => ^AEB + ^ACB = 45 độ
\(\widehat{AEB}=\widehat{EBC}+\widehat{C}\)
\(\Leftrightarrow\widehat{ABE}-\widehat{EBC}=\widehat{B}-20^0\)
\(\Leftrightarrow\widehat{ABE}-\widehat{EBC}-\widehat{ABE}-\widehat{EBC}=-20^0\)
\(\Leftrightarrow\widehat{EBC}=10^0\)
Tự vẽ hình
1, Xét △AED có: AE = AD (gt) => △AED cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
2, Vì △ABC cân tại A (gt) => ABC = ACB và AB = AC
Ta có: AB = AE + EB ; AC = AD + DC
Mà AB = AC (cmt) ; AE = AD (gt)
=> EB = DC
Xét △BDC và △CEB
Có: DC = EB (cmt)
BCD = CBE (cmt)
BC là cạnh chung
=> △BDC = △CEB (c.g.c)
=> BDC = CEB (2 góc tương ứng)
Mà BDC = 90o
=> CEB = 90o
=> EC ⊥ AB