K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

A B C M N P O

Gọi O là trọng tâm của tam giác. Ta có:

OA + OB > AB

OA + OC > AC

OB + OC > BC

=> 2(OA + OB + OC) > AB + BC + CA

\(\Rightarrow2\cdot\left(\dfrac{2}{3}AM+\dfrac{2}{3}BN+\dfrac{2}{3}CP\right)>AB+BC+CA\)

\(\Rightarrow\dfrac{4}{3}\left(AM+BN+CP\right)>AB+BC+CA\)

\(\Rightarrow AM+BN+CP>\dfrac{3}{4}\left(AB+BC+CA\right)\)

Ta có:

Nếu góc AMB tù hoặc vuông thì AB > AM

Nếu góc AMC tù hoặc vuông thì AC > AM

Tương tự: BC > BN hoặc BA > BN

CA > CP hoặc CB > CP

Vậy các cạnh của tam giác ABC luôn lớn hơn 2 trong 3 trung tuyến

=> AB + BC + CA > AM + BN + CP

Vậy...........................................

13 tháng 7 2018

A B C M N P D G

Trên tia đối của tia MA lấy điểm D sao cho MA = MD

Dễ dàng chứng minh t/g ABM = t/g DCM (c.g.c) => AB = CD

Xét t/g ACD có: AD < AC + CD

=> 2AM < AC + AB => AM < \(\frac{AB+AC}{2}\) 

Chứng minh tương tự ta có: \(BN< \frac{AB+BC}{2};CF< \frac{CA+CB}{2}\)

\(\Rightarrow AM+BN+CP< \frac{AB+AC+AB+BC+CA+CB}{2}=\frac{2\left(AB+AC+BC\right)}{2}=AB+AC+BC\) (1)

Gọi trọng tâm là G

Xét t/g GBC có: GB + GC > BC => \(\frac{2}{3}BN+\frac{2}{3}CP>BC\) => \(BN+CP>\frac{3}{2}BC\)

Tương tự ta có: \(AM+CP>\frac{3}{2}AC;AM+BN>\frac{3}{2}AB\)

=> BN + CP + AM + CP + AM + BN > \(\frac{3}{2}BC+\frac{3}{2}AC+\frac{3}{2}AB\)

=> 2(AM + BN + CP) > \(\frac{3}{2}\left(AB+BC+AC\right)\)

=> AM + BN + CP > \(\frac{3}{4}\left(AB+BC+AC\right)\) (2)

Từ (1) và (2) => \(\frac{3}{4}\left(AB+BC+AC\right)< AM+BN+CP< AB+BC+AC\) (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 7 2018

Lời giải:

Theo BĐT về tam giác: độ dài một cạnh tam giác thì nhỏ hơn tổng độ dài 2 cạnh còn lại:

\(\Rightarrow \left\{\begin{matrix} AM< MP+AP\\ AM< MN+AN\end{matrix}\right.\Rightarrow 2AM< MP+MN+AP+AN\)

Dễ nhận thấy $MN,MP$ là các đường trung bình của tam giác $ABC$

\(\Rightarrow MN=\frac{1}{2}AB; MP=\frac{1}{2}AC\)

Lại có: \(AP=\frac{1}{2}AB; AN=\frac{1}{2}AC\)

Do đó: \(2AM< \frac{1}{2}AC+\frac{1}{2}AB+\frac{1}{2}AB+\frac{1}{2}AC=AB+AC\)

\(\Rightarrow AM< \frac{AB+AC}{2}\)

Hoàn toàn TT với \(BN, CP\) suy ra:

\(AM+BN+CP< \frac{AB+AC}{2}+\frac{BC+BA}{2}+\frac{CA+CB}{2}=AB+BC+AC\)

Ta có đpcm

22 tháng 1 2022

Tham khảo:

Tìm GTNN của M=1/1-2(ab+bc+ac)+1/abc - thu phương

22 tháng 1 2022

Cảm ơn nhiều nha nhưng mình cần cách khác í

13 tháng 3 2017

A B C P N M

Xét diện tích tam giác ABC:

\(S_{ABC}=\frac{AM.BC}{2}=\frac{CP.AB}{2}=\frac{BN.AC}{2}\)

=> \(AM.BC=CP.AB=BN.AC\)

=> \(AM=\frac{CP.AB}{BC}\)\(BN=\frac{CP.AB}{AC}\)

Theo gt, ta có:

\(BC+AM=AB+CP\)

\(\Leftrightarrow BC+\frac{CP.AB}{BC}=AB+CP\)

\(\frac{\Leftrightarrow CP.AB}{BC}-AB=CP-BC\)

\(\frac{\Leftrightarrow\left(CP.AB-AB.BC\right)}{BC}=\frac{\left(CP.BC-BC^2\right)}{BC}\)

\(\frac{\Leftrightarrow AB.\left(CP-BC\right)}{BC}=\frac{BC.\left(CP-BC\right)}{BC}\)

\(\Rightarrow AB=BC\)(1)

Theo gt, ta lại có:

\(AC+BN=AB+CP\)

\(\Leftrightarrow AC+\frac{AB.PC}{AC}=AB+CP\)

\(\frac{\Leftrightarrow AB.PC}{AC}-AB=PC-AC\)

\(\frac{\Leftrightarrow\left(AB.PC-AB.AC\right)}{AC}=\frac{\left(CP.AC-AC^2\right)}{AC}\)

\(\frac{\Leftrightarrow AB.\left(PC-AC\right)}{AC}=\frac{AC.\left(CP-AC\right)}{AC}\)

\(\Rightarrow AB=AC\)(2)

Từ (1) và (2) suy ra \(AB=BC=AC\)

=> ĐPCM

13 tháng 3 2017

albaba nguyễn làm bài này cái !