Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M N H I K
Cm: a) Ta có: AM + AN = 2AB
hay AM + AC + CN = AB + AB
=> AM + CN = AB (vì AC = AB)
Mà AM + MB = AB (M thuộc AB)
=> BM = CN (Đpcm)
b) Gọi giao điểm của BC và MN là I. Kẻ đường thẳng MH // AN
Do MH // AN => góc MHB = góc ACH
Mà góc B = góc ACH ( vì t/giác ABC cân)
=> góc B = góc MHB => t/giác BMH cân tại M
=> MB = MH
Mà MB = CN (cm câu a)
=> MH = CN
Xét t/giác MHI có góc HMC + góc MIH + góc IHM = 1800 (tổng 3 góc của 1 t/giác)
Xét t/giác CNI có góc N + góc NCI + góc CIN = 1800 (tổng 3 góc của 1 t/giác)
Và góc MIH = góc CIN (đối đỉnh); góc MHI = góc ICN (so le trong vì MH//AC)
=> góc HMI = góc N
Xét t/giác MHI và t/giác NCI
có MH = CN (cmt)
góc MHI = góc ICN (so le trong vì MH // AC)
góc HMI = góc N (cmt)
=> t/giác MHI = t/giác NCI (g.c.g)
=> MI = IN (hai cạnh tương ứng)
=> HC đi qua trung điểm của đoạn thẳng MN
hay BC đi qua trung điểm của đoạn thẳng MN
c) Xem rồi lm
![](https://rs.olm.vn/images/avt/0.png?1311)
a. tam giac ade va tam giac ace co
ad=ac
de=ce
ae chung
suy ra tam giac ade =tam giac ace(c.c.c)
b. tam giac ade = tam giac ace (chung minh tren)
suy ra goc cae =goc dae(2 goc tuong ung)
tam giac iac va tam giac iad co
ac=ad
goc cai = dai
ai chung
suy ra tam giac iac=iad(c.g.c}
suy ra di=ci
c sai de bai hay sao ay
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
(bn tu ve hinh nha )
a,Xet tam giac AEC va tam giac ABD, ta co:
goc a chung
AB=AC (gt)
goc ABD=goc ACE (=900)
=>tam giac AEC=ABD(g.c.g)
=>AD=AE va BD=CE (tg ung)
b,Theo cau a , ta co ;AD=AE ;AB=AC(cmt)
Ma AB+BE=AE
AC+CD=AD
=>AE-AB=AD-AC
=>BE=CD
Xet tam giac BEC va tam giac CDB , ta co :
BE=CD (cmt0
CB chung
CE=BD(cm cau b )
=> tam giac BEC=tam giac CDB(C.C.C)
c,Goi M la giao diem cua AM vs ED (M thuoc ED)
Theo cau a , AE=AD
Xet tam giac ABI va tam giac ACI , ta co:
goc ABI =goc ACI =900 (gt)
AB=AC(GT)
AI chung
=> tam giac ABI =tam giac ACI(ch-cgv)
=>goc BAI=goc CAI (tg ung)
Xet tam giac AEM va tam giac ADM , ta co
AE=AD (cm cau a)
goc BAI =goc CAI (cmt)
AM chung
=>tam giac AEM =tam giac ADM ( c.g.c)
=>goc AME = goc AMD (tg ung)
ma goc AME+goc AMD =1800(KB)
=>goc AME=goc AMD=1/2*1800=900=>AM vuong goc vs ED
ma I thuoc AM
=>AI vuong goc vs ED
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
a) Xét tam giác ABM có:
MK là đường trung trực
=> MB = MA ( tính chất đường trung trực )
=> Tam giác ABM cân tại M
b) Vì MK vuông góc AB
CB vuông góc AB
=> MK // CB
=> ^AMK = ^MCB ( đồng vị ). (1)
Vì tam giác ABM cân tại M
Mà MK là trung trực
=> MK là phân giác
=> ^AMK = ^BMK. (2)
Từ (1) và (2) => ^BMK = ^MCB. (3)
Vì tam giác BMK vuông tại K
=> ^BMK + ^MBK = 90°
Vì tam giác ABC vuông tại A
=> ^MBK + ^MBC = 90°
=> ^BMK = ^MBC. (4)
Từ (3) và (4) => ^MBC = ^MCB
bài làm
c) Xét tam giác BIA có:
AH vuông góc với BI
IK vuông góc với AB
Mà AH và IK cắt nhau ở M
=> M là trực tâm
=> BM vuông góc với IA ( đpcm )
d) Xét tam giác HMB và tam giác EMA có:
^MHB = ^MEA = 90°
Cạnh huyền: BM = AM ( cmt )
Góc nhọn: ^HMB = ^EMA ( đối )
=> Tam giác HMB = tam giác EMA ( ch-gn )
=> HM = ME
=> Tam giác MHE cân tại M
=> ^MHE = ^MEH
Xét tam giác MHE có:
^HME + ^MHE + ^MEH = 180°
=> ^HME + 2^MHE = 180°
=> 2^MHE = 180° - ^HME. (5)
Xét tam giác ABM cân tại M có:
^BMA + ^MBA + ^MAB = 180°
=> ^BMA + 2^MAB = 180°
=> 2^MAB = 180° - ^BMA. (6)
Mà ^HME = ^BMA ( đối ). (7)
Từ (5) và (6) và (7) => 2^MHE = 2^MAB
=> ^MHE = ^MAB
Mà hai góc này ở vị trí so le le trong
=> HE // AB