Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có : \(AB^2+AC^2=3^2+4^2=25\) ; \(BC^2=5^2=25\)
Ta thấy \(AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A
b) Xét \(\Delta ABD\) và \(\Delta EBD\) có:
\(\widehat{BAD}=\widehat{BED}=90^o;BD:chung;\widehat{ABD}=\widehat{EBD}\)
\(\Rightarrow\) \(\Delta ABD\) = \(\Delta EBD\)
\(\Rightarrow\) AD = ED
c) Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{FDA}=\widehat{CDE};AD=ED;\widehat{FAD}=\widehat{CED}=90^o\)
\(\Rightarrow\) \(\Delta ADF\) = \(\Delta EDC\)
\(\Rightarrow\) DF = DC
Xét \(\Delta DEC\) vuông tại E
=> DE < DC mà DC = DF => DE < DF
a) Ta có: AB2 + AC2 = 32 + 42 = 9 + 16=25
BC2 = 52 = 25
=> AB2 + AC2 = BC2 (=25)
Áp dụng định lí Py - ta - go đảo
=> ΔABC vuông tại A.
b) Xét 2 Δ vuông ABD và EBD có:
+) ∠BAD = ∠BED = 90 độ
+) Cạnh BD chung
+) ∠B1 = ∠B2 (vì BD là tia phân giác của ∠B)
=> △ABD = ΔEBD (ch - góc nhọn)
=> AD = ED (2 cạnh tương ứng)
c) Xét 2 Δ vuông AFD và ECD có:
+) ∠FAD = ∠CED = 90 độ
+) AD = ED (cmt)
+) ∠FDA = ∠CDE (vì 2 góc đối đỉnh)
=> ΔAFD = ΔECD
=> DF = DC (2 cạnh tương ứng)
Xét △ CED vuông tại E có:
∠CED = 90 độ là góc lớn nhất
=> CD là cạnh lớn nhất
=> CD > ED
mà CD = FD (cmt)
=> FD > ED.
Chúc bạn học tốt!
Hình tự vẽ nha
a ) Vì AB = 3 ( gt ) => AB2 = 9
AC = 4 ( gt ) => AC2 = 16
BC = 5 ( gt ) => BC2 = 25
MÀ 25 = 9 + 16
DO đó BC2 = AB2 + AC2
=> \(\Delta\)ABC vuông tại A ( định lí đảo định lí py ta go )
Vậy \(\Delta\)ABC vuông tại A
b ) Vì \(\Delta\)ABC vuông tại A ( CM a ) => BAC = 90o hay BAD = 90o
Vì DE \(\perp\)BC ( gt ) => BED = DEC = 90o ( định nghĩa 2 đường thẳng vuông góc )
Vì BD là tia phân giác của góc B ( gt ) => ABD = EBD
Xét \(\Delta\)ABD và \(\Delta\)EBD có :
ABD = EBD ( cmt )
BD chung
BAD = BED ( = 90o )
DO đó \(\Delta\)ABD = \(\Delta\)EBD ( cạnh huyền - góc nhọn )
=> DA = DE ( 2 cạnh tương ứng )
Vậy ..
a)
\(AB^2+AC^2=3^2+4^2=9+16=25\left(cm\right)\)
\(BC^2=5^2=25\left(cm\right)\)
=> tam giác ABC vuông tại A
b)
xét 2 tam giác vuôgn ABD và EBD có:
BD(chung)
ABD=EBD(gt)
=> tam giác ABD=EBD(CH-GN)
=> DA=DE
c)
xét tam giác ADF và tam giác EDC có:
AD=DE(theo câu a)
FAD=DEC=90
ADF=EDC(2 góc đối đỉnh)
=> tam giác ADF=EDC(g.c.g)
=> DC=FF
ta có tam giác ADF có A=90=> FD là cạnh lớn nhất trong tam giác ADF
=> FD>AD mà AD=DE( theo câu b)=> DF>DE
Bài 3:
theo bài ra ta có:
\(\dfrac{x+2y}{4x-3y}=-2\\ \Rightarrow x+2y=-2\left(4x-3y\right)\\ \Rightarrow x+2y=-8x+6y\\ \Rightarrow x+8x=6y-2y\\ \Rightarrow9x=4y\\ \Rightarrow\dfrac{x}{y}=\dfrac{4}{9}\\ \Rightarrow\dfrac{-x}{y}=\dfrac{-4}{9}\)
vậy \(\dfrac{-x}{y}=\dfrac{-4}{9}\)
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
a) bằng nhau trường hợp cạnh huyền (AB=AC) _ góc nhọn (BAC^)
b) ABD^ + HBC^ = ABC^
và ACE^ + HCB^ = ACB^
Mà ABD^ = ACE^ (từ 2 tam giác bằng nhau của câu a suy ra)
và ABC^ = ACB^ (gt)
=> HBC^ = HCB^ hay tam giác BHC cân tại H
c) từ kq câu a => AE = AD hay tam giác EAD cân tại A
=> AED^ = (180o - A^)/2 (1)
tam giác ABC cân tại A => ABC^ = (180o - A^)/2 (2)
Từ (1) và (2) => AED^ = ABC^
Mà 2 góc này ở vị trí đồng vị => ED // BC
A B C M H N K
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AM chung
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
hay \(\widehat{HBM}=\widehat{KCM}\)
Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;
BM = CM
\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)
\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)
Vì \(\Delta ABM=\Delta ACM\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)
\(\Rightarrow\Delta ABM\) vuông tại M
Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=17^2-8^2\)
\(\Rightarrow AM^2=15^2\)
\(\Rightarrow AM=15\)
Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)
Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).
A B C 4 cm 3 cm 5 cm
a) ta có: 32 + 42 = 25 cm = 52
hay AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (theo định lý PITAGO đảo)
b) sai đề trầm trọng.