K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Ta co \(MP=MB.\sin\widehat{B},MQ=MC.\sin\widehat{C}\)

=> \(MP+MQ=\left(MB+MC\right).\sin\widehat{B}=BC.\sin\widehat{B}=const\)

28 tháng 7 2023

A B C D M E

\(MD\perp AB\) (gt)

\(AC\perp AB\) (gt)

=> MD//AC (1) \(\Rightarrow\widehat{BMD}=\widehat{C}\) (góc đồng vị)

Mà \(\widehat{B}=\widehat{C}\) (gt)

\(\Rightarrow\widehat{B}=\widehat{BMD}\) => tg BMD vuông cân tại D => MD=BD (2)

\(ME\perp AC\) (gt)

\(AB\perp AC\) (gt)

=> ME//AB (3)

C/m tương tự ta cũng có tg CME vuông cân tại E => ME=CE (4)

Từ (1) và (3) => ADME là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)

=> MD = AE (5) và ME = AD (6)

Ta có

\(C_{ADME}=\left(MD+ME\right)x2\)

AE = AC-CE Từ (5) => MD=AC - CE Từ (4) => MD = AC - ME

\(\Rightarrow C_{ADME}=\left(AC-ME+ME\right)x2=2xAC\) không đổi