\(\Delta ABC\) cân tại A. Lấy D\(\in\)AB, E
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a) xét tam giác ADE có AD = AE (gt)

=> tam giác ADE cân tại A (đ/n)

=> \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\) (1)

\(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\) (2)

từ 1 và 2 \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)

mà 2 góc này ở vị trí so le trong

\(\Rightarrow DE\)//BC

Xét tứ giác BDEC có DE//BC(cmt)

=> BDEC là hình thang (dấu hiệu nhận bt)

mà DB=EC ( AB-AD=AC-AE)

=> BDEC là hình thang cân ( dấu hiệu nhận bt)

a; Xét ΔABC có AD/AB=AE/AC
nên DE//BC

=>BDEC là hình thang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét ΔDBE có DB=DE
nên ΔDBE cân tại D

=>góc DEB=góc DBE

=>góc DBE=góc EBC

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Ta có: ΔEDC cân tại E

nên góc EDC=góc ECD

=>góc ECD=goac BCD

=>CD là phân giác của góc ACB

=>D là chân đường phân giác kẻ từ C xuống AB

13 tháng 11 2021

a: Xét ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

thật ra em cần ý b hơn ._.

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

.

8 tháng 9 2016

Bạn tự vẽ hình nha ==''

AD = AE

=> Tam giác ADE cân tại A

=> ADE = 900 - DAE/2

mà ABC = 900 - BAC/2 (tam giác ABC cân tại A)

=> ADE = ABC

mà 2 góc này ở vị trí so le trong

=> DE // BC

=> BDEC là hình thang

mà ABC = ACB (tam giác ABC cân tại A)

=> BDEC là hình thang cân

BD = DE

=> Tam giác DBE cân tại D

=> DBE = DEB

mà DEB = EBC (DE // BC, 2 góc so le trong)

=> DBE = EBC

=> BE là tia phân giác của DBC

DE = EC

=> Tam giác ECD cân tại E

=> ECD = EDC

mà EDC = DCB (DE // BC, 2 góc so le trong)

=> ECD = DCB

=> CD là tia phân giác của ECB

Vậy BD = DE = EC <=> D và E lần lượt thuộc tia phân giác của DBC và ECB

8 tháng 9 2016

lấy điểm D trên cạnh AB

25 tháng 8 2017

làm câu A trước : ( hình tự vẽ )

a) Vì AD = AE ( gt )

\(\Rightarrow\)t/g ADE cân tại A

\(\Rightarrow\)\(\widehat{D1}=\frac{180-\widehat{A}}{2}\)( t/g ABC cân tại A )

         \(\widehat{B}=\frac{180-\widehat{A}}{2}\) ( t/g ABC cân tại A )

\(\Rightarrow\widehat{D1}=\widehat{B}\)vài 2 góc này ở vị trí đồng vị

\(\Rightarrow\)DE // BC

\(\Rightarrow\)BDEC - httg

Ta có :   \(\widehat{B}=\widehat{C}\)   ( t/g ABC cân tại A )

\(\Rightarrow\)BDEC - httg cân

16 tháng 9 2020

https://lazi.vn/user/cherry.be1

24 tháng 8 2017

A B C D E

AD = AE

 => Tam giác ADE cân tại A

=> ADE = 90 - DAE/2

mà ABC = 90 - BAC/2 (tam giác ABC cân tại A)

=> ADE = ABC

mà 2 góc này ở vị trí so le trong

=> DE // BC

=> BDEC là hình thang

mà ABC = ACB (tam giác ABC cân tại A)

=> BDEC là hình thang cân BD = DE

=> Tam giác DBE cân tại D

=> DBE = DEB mà DEB = EBC (DE // BC, 2 góc so le trong)

=> DBE = EBC

=> BE là tia phân giác của DBC DE = EC

=> Tam giác ECD cân tại E

=> ECD = EDC mà EDC = DCB (DE // BC, 2 góc so le trong)

=> ECD = DCB

=> CD là tia phân giác của ECB

Vậy BD = DE = EC

<=> D và E lần lượt thuộc tia phân giác của DBC và ECB 

a) xét tamg giác ADE có:

AD = AE => tam giác ADE cân tại A

=> AED^ = ACB^ =

> DE // BC xét tứ giác DECB có DE // BC ABC^ = ACB^

=> DECB là hình thang cân