Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: MH//AB(cmt)
nên EH//AB
Suy ra: \(\widehat{CHE}=\widehat{CBA}\)(hai góc đồng vị)
mà \(\widehat{CBA}=\widehat{HCE}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{EHC}=\widehat{ECH}\)
Xét ΔEHC có \(\widehat{EHC}=\widehat{ECH}\)(cmt)
nên ΔEHC cân tại E(Định lí đảo của tam giác cân)
Ta có: \(\widehat{ECH}+\widehat{EAH}=90^0\)(ΔAHC vuông tại H)
\(\widehat{EHC}+\widehat{AHE}=90^0\)(HE là tia nằm giữa hai tia HC,HA)
mà \(\widehat{EHC}=\widehat{ECH}\)(cmt)
nên \(\widehat{EAH}=\widehat{EHA}\)
Xét ΔEHA có \(\widehat{EAH}=\widehat{EHA}\)(cmt)
nên ΔEHA cân tại E(Định lí đảo của tam giác cân)
Ta có: EH=EC(ΔEHC cân tại E)
mà EH=EA(ΔEHA cân tại E)
nên EC=EA
hay E là trung điểm của AC(Đpcm)
a) Xét ΔAIH và ΔMIB có
IA=IM(gt)
\(\widehat{AIH}=\widehat{MIB}\)(hai góc đối đỉnh)
IH=IB(I là trung điểm của BH)
Do đó: ΔAIH=ΔMIB(c-g-c)
Suy ra: AH=MB(hai cạnh tương ứng)
Xét ΔBMA có
AB+BM>AM(Bđt tam giác)
mà AH=MB(cmt)
nên AB+AH>AM(Đpcm)
b) Xét ΔBIA và ΔHIM có
IA=IM(gt)
\(\widehat{BIA}=\widehat{HIM}\)(hai góc đối đỉnh)
IB=IH(I là trung điểm của BH)
Do đó: ΔBIA=ΔHIM(c-g-c)
Suy ra: \(\widehat{IBA}=\widehat{IHM}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MH(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét tứ giác AHMB có
I là trung điểm chung của MA và HB
=>AHMB là hình bình hành
=>BM=AH
AB+AH=AB+BM>AM
b: Xét ΔABC có
H là trung điểm của BC
HE//AB
=>E là trung điểm của AC
ΔAHC vuông tại H
mà HE là trung tuyến
nên EH=EC
=>ΔEHC cân tại E
Áp dụng đl Pi ta go đảo cho Tam giác ABC
=>AB2+CA2=BC2
=>152+362=392
=>1521=1521
=>Tam giác ABC vuông tại A
Áp dụng đl pi ta go cho tam giác ABH
=>AB2=AH2+BH2
=>152=92+BH2
=>BH2=225-81=144=122
=>BH=12
Vậy...
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Tam giác sao lại có số đo??!!!!
b) Xét \(\Delta AME\)và \(\Delta BMH\)có:
AM = BM (M là trung điểm của AB)
\(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)
ME = MH (gt)
\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)
R làm sao mà suy ra AH vuông góc vs AE??!!!!
c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)
\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AE//BH\)
hay \(AE//BC\)(1)
Xét \(\Delta ANF\)và \(\Delta CNH\)có:
AN = CN (N là trung điểm của AC)
\(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)
NF = NH(gt)
\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AF // CH
hay AF // BC (2)
Từ (1) và (2) => A,E,F thẳng hàng
làm sao đây mình chưa học đến lớp7
thông cảm nha
hỏi người yêu đi