Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAME vuông tại M và ΔAMH vuông tại M có
AM chung
ME=MH
=>ΔAME=ΔAMH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AC là phân giác của góc FAH
góc FAE=góc FAH+góc EAH
=2*(góc BAH+góc CAH)
=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
Hình bạn tự vẽ nha!
b) Xét 2 \(\Delta\) \(AME\) và \(BMH\) có:
\(AM=BM\) (vì M là trung điểm của \(AB\))
\(\widehat{AME}=\widehat{BMH}\) (vì 2 góc đối đỉnh)
\(ME=MH\left(gt\right)\)
=> \(\Delta AME=\Delta BMH\left(c-g-c\right).\)
Cái gì vuông góc với AE thế, không hiểu?
c) Theo câu b) ta có \(\Delta AME=\Delta BMH.\)
=> \(\widehat{EAM}=\widehat{HBM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AE\) // \(BH.\)
Hay \(AE\) // \(BC\) (1).
Xét 2 \(\Delta\) \(ANF\) và \(CNH\) có:
\(AN=CN\) (vì N là trung điểm của \(AC\))
\(\widehat{ANF}=\widehat{CNH}\) (vì 2 góc đối đỉnh)
\(NF=NH\left(gt\right)\)
=> \(\Delta ANF=\Delta CNH\left(c-g-c\right)\)
=> \(\widehat{AFN}=\widehat{CHN}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AF\) // \(CH.\)
Hay \(AF\) // \(BC\) (2).
Từ (1) và (2) => 3 điểm \(A,E,F\) thẳng hàng (theo tiên đề Ơ - clit) (đpcm).
Chúc bạn học tốt!
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a ) Xét \(\Delta AHB\) vuông tại H ta có :
\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )
\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)
Vậy \(\widehat{HAB}=60^o\)
b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :
AH = AD (gt)
IH=ID (gt)
AI cạnh chung
\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)
Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )
Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )
\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)
Do đó \(AI\perp HD\left(đpcm\right)\)
c ) Vì \(\Delta AHI=ADI\) ( cm câu b )
\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )
Xét \(\Delta AHK\) và \(\Delta ADK\) có ;
AH = AD (gt)
\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)
AK cạn chung
\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )
\(\Rightarrow AD\perp AC\)
Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)
AD//AB ( đpcm)
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
a) Tam giác sao lại có số đo??!!!!
b) Xét \(\Delta AME\)và \(\Delta BMH\)có:
AM = BM (M là trung điểm của AB)
\(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)
ME = MH (gt)
\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)
R làm sao mà suy ra AH vuông góc vs AE??!!!!
c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)
\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AE//BH\)
hay \(AE//BC\)(1)
Xét \(\Delta ANF\)và \(\Delta CNH\)có:
AN = CN (N là trung điểm của AC)
\(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)
NF = NH(gt)
\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AF // CH
hay AF // BC (2)
Từ (1) và (2) => A,E,F thẳng hàng