\(\Delta ABC\) cân tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AB,AC. Biế...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

Hình bạn tự vẽ nhé tks bạnvui

a) \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.6.8=24\left(cm^2\right)\)

b)Ta có: HM là đường trung tuyến của \(\Delta AHB\) vuông

\(\Rightarrow HM=\frac{1}{2}AB=AM=MB\)

Vì D là điểm đối xứng với H qua M nên HM=MD

Do đó HM=AM=MB=MD

\(\Rightarrow\)tứ giác ADBH là hình bình hành (Hai đường chéo cắt nhau tại trung điểm mỗi đường)

\(\widehat{AHB}=90^o\)(AH là đường cao của \(\Delta ABC\))

Do đó ADBH là hình chữ nhật (hình bình hành có một góc vuông)

c) Ta có AH là đường cao của \(\Delta\)cân ABC do đó AH cũng là đường trung tuyến ứng với cạnh BC \(\Rightarrow BH=CH\)

Ta có AH=HE(A đối xứng với E qua H)

Do đó tứ giác ABEC là hình bình hành ( Hai đường chéo cắt nhau tại trung điểm mỗi đường)

\(\widehat{AHB}=90^o\)(AH là đường cao của \(\Delta ABC\))

Do đó ABEC là hình thoi (Hình bình hành có 2 đường chéo vuông góc với nhau)

d) Ta có I là trung điểm của HF

K là trung điểm của FC

Do đó IK là đường trung bình của \(\Delta HCF\)

\(\Rightarrow\)IK//HC(tính chất đường trung bình)

mà HC\(\perp\)HE

Nên KI\(\perp\)HE (Từ vuông góc đến song song)

mà I là giao điểm của đường cao HF và đường cao KI

\(\Rightarrow\)I là trực tâm của \(\Delta EHK\)

\(\Rightarrow\)EI là đường cao thứ ba

Do đó EI\(\perp\)HK(1)

Ta có K là trung điểm của FC

H là trung điểm của BC

Do đó KH là đường trung bình của \(\Delta BCF\)

\(\Rightarrow\)KH//BF (2)

Từ (1) và (2) \(\Rightarrow\)EI\(\perp\)BF (đpcm)

*Giải muốn khóc luôn đó bạn

10 tháng 12 2019

Ok :v

16 tháng 8 2020

a) tứ giác AMHN có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\) => tứ giác AMHN là hình chữ nhật

b) vì O đối dứng H qua M => OM=MH

        E đối xứng H qua N => HN=NE

xét tam giác HDE có \(\hept{\begin{cases}OH=MH\\HN=NE\end{cases}\Rightarrow}\)MN là đường trung bình tam giác HDE

=> MN//DE lại có MA // NE => MAEN là hình bình hành

c) có MAEN là hình bình hành => MN=AE

MN là đường trung bình tam giác HDE => \(MN=\frac{1}{2}DE\)

=> \(AE=\frac{1}{2}DE\)=> A là trung điểm DE