\(\Delta ABC\) cân ở A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

giải tiếp =>góc BAM=góc CAM (2 cạnh tương ứng)                                                                                           =>AM là tia phân giác của góc A

A B C D E M F K

Hình đây mọi người

9 tháng 2 2017

Bấm vào đúng là đáp án sẽ hiện lên!!!!

Thử đi

25 tháng 2 2018

Tự vẽ hình nha Chung

Câu a), b) dễ tự làm nha, tớ làm câu c)

c) Vì BK vuông góc AD => ΔDBK vuông tại K

=> góc KBD = 90 độ - góc D

Mà góc KBD = góc MBH

=> góc MBH = 90 độ - góc D (1)

Δ AMD vuông tại M

=> góc MAD = 90 độ - góc D (2)

Từ (1) , (2) => góc MBH = góc MAD ( đpcm)

25 tháng 2 2018

thank HUY yeu

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
6 tháng 2 2018

a) Do tam giác ABC cân tại A nên AB = AC; \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và ACE có:

DB = EC

AB = AC

\(\widehat{ABD}=\widehat{ACE}\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{ADB}=\widehat{AEC}\) và AD = AE

Suy ra \(\Delta DHB=\Delta EKC\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow DH=EK\Rightarrow AH=AK\)

c) Xét tam giác vuông AHI và AKI có:

AH = AK

Cạnh AI chung

\(\Rightarrow\Delta AHI=\Delta AKI\)  (Cạnh huyền  - cạnh góc vuông)

\(\Rightarrow\widehat{HAI}=\widehat{KAI}\) hay I là phân giác của gocsc DAE.

d) Xét tam giác cân ABC có AM là trung tuyến nên đồng thời là đường cao.

Xét tam giác cân ADE có AM là đường cao đồng thời phân giác.

Vậy nên A, M, I thẳng hàng. Suy ra AM, HB, KC đồng quy tại điểm I.

e) Ta có BM = MC và \(IM\perp BC\) nên IM là trung trực của BC

Suy ra IB = IC hay IC là tam giác BIC cân tại I.

f) Tam giác ABC cân có góc A  = 60o nên ABC là tam giác đều.

Xét tam giác DAC có AB = DB = BC nên nó là tam giác vuông tại A.

Suy ra AC // HI

\(\Rightarrow\widehat{CBI}=\widehat{BCA}=60^o\)

Tam giác cân BIC có một góc bằng 60o nên nó là tam giác đều.