Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+32+33+...+32015
=> 3A=3+32+33+...+32016
=> 3A-A=2A=(3+32+33+...+32016)-(1+3+32+33+...+32015)
=32016-1
=>2A+1=32016=(31013)2 là số chính phương.
\(B=3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3B=3^2+3^3+...+3^{2020}\)
\(\Rightarrow3B-B=3^{2020}-3\)
\(\Rightarrow2B-1=3^{2020}-4\)
( B = 3+3^2+3^3+...+3^2019)
ta có:B = 3 + 3^2+3^3 + ...+ 3^2019
=> 3B = 3^2 + 3^3+3^4 +...+ 3^2020
=> 3B-B = 3^2020 - 3
2B = 3^2020-3
=> 2B -1 = 3^2020 - 3 - 1
2B - 1 = (3^1010)^2 - (3+1)
2B - 1 = (3^1010)^2 - 4 = (3^1010)^2 - 2^2
...
mk chỉ lm đk đến đây thôi! xl bn nha
Nhớ nhấn nhé
Số số hạng của tổng A là 30-0+1=31 số
A=1 + 3 + 32 + 33 +...+ 330=(1+3+32+33)+…+(324+325+326+327)+328+329+330
Đồng dư..0+..0+..0+…+…0+328+329+330=328+329+330(mod 10)
Ta có 32=-1 mod(10) suy ra 328+329+330 đồng dư 1+3+9=13 mod 10
Vậy A tận cùng là 3=> A không là số chính phương
Làm lại :
Ta có: A= 1+3+32+33+...+330
=>3A=3+32+33+34+...+331
=> 3A-A=(3+32+33+34+...+331) - (1+3+32+33+...+330)
=>2A=331-1
\(\Rightarrow A=\frac{3^{31}-1}{2}=\frac{\left(3^4\right)^7.3^3-1}{2}=\frac{\left(...1\right)^7.27-1}{2}\)
\(A=\frac{\left(...1\right).7-1}{2}=\frac{\left(...6\right)}{2}=...3\)
Vì số chính phương không có tận cùng là 3 nên A không phải là số chính phương
3A=3.(3^0+3^1+3^2+3^3+...+3^30)
3A=3^1+3^2+3^3+....+3^31
-
A=3^0+3^1+3^2+3^3+...+3^30
-----------------------------------------------------
2A=3^31-1=3^28+3^3-1=(3^4)^7.3^3-1=(...1).(...7)-1=...6
Suy ra A = ...3 . số chính phương không có tận cùng bằng 3
nhớ tick cho mình nhé chắc chắn đúng