\(\frac{\text{ab}}{b}=\frac{bc}{c}=\frac{ca}{a}\). Chứng minh rằn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

ĐKXĐ :  a;b;c \(\ne0\)

Khi đó \(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}\)

<=> \(a.\frac{b}{b}=b.\frac{c}{c}=c.\frac{a}{a}\)

<=> \(a=b=c\)

31 tháng 8 2021

Từ: \(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(đk: a,b,c>0; a+b+c\ne0\right)\)

Có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\left(a+b+c\ne0\right)\Leftrightarrow a=b=c\)

NM
3 tháng 9 2021

ta có :

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)

\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)

\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)

Vậy ta có đpcm

3 tháng 9 2021

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)

=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)

=> a2 + b2 - 2ab - c2 = 0

=> (a - b)2 - c2 = 0

<=> (a - b + c)(a - b - c) = 0

<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)

Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)

Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)

=> đpcm 

10 tháng 11 2020

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Đẳng thức xảy ra khi a = b = c

NV
14 tháng 5 2020

Áp dụng BĐT Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Cộng vế với vế:

\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Dấu "=" xảy ra khi \(a=b=c\)

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

23 tháng 3 2017

Từ \(a+b+c=1\Rightarrow2a+2b+2c=1\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)

Ta có: \(\frac{a+bc}{b+c}=\frac{a\left(a+b+c\right)+bc}{b+c}=\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Tương tự ta viết lại BĐT cần chứng minh như sau:

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}+\frac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\)

Đặt \(\hept{\begin{cases}x=b+c\\y=a+c\\z=a+b\end{cases}}\) thì BĐT cần chứng minh là:

\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\forall\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\)

Áp dụng BĐT AM-GM ta có: 

\(\hept{\begin{cases}\frac{xy}{z}+\frac{xz}{y}\ge2x\\\frac{xz}{y}+\frac{yz}{x}\ge2y\\\frac{yz}{x}+\frac{xy}{z}\ge2z\end{cases}}\)

Cộng theo vế rồi thu gọn ta có:\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\)

BĐT được chứng minh nên BĐT đầu cũng đã được chứng minh

5 tháng 5 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2\left|b\right|=2b\)( vì b > 0 )

Tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)\(\frac{ab}{c}+\frac{ca}{b}\ge2a\)

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm

Dấu "=" xảy ra <=> a = b = c 

5 tháng 5 2021

Giả sử ta phải chứng minh:  \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\left(a,b,c>0\right)\).

\(\Leftrightarrow\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)^2\ge\left(a+b+c\right)^2\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+\frac{2ab.bc}{ac}+\frac{2bc.ca}{ab}+\frac{2ca.ab}{cb}\ge\)\(a^2+b^2+c^2+2ab+2bc+2ca\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2b^2+2c^2+2a^2-a^2-b^2-c^2\ge\)\(2ab+2bc+2ca\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+a^2+b^2+c^2\ge2ab+2bc+2ca\left(1\right)\).

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\frac{a^2b^2}{c^2}+c^2\ge2\sqrt{\frac{a^2b^2}{c^2}.c^2}=2ab\left(2\right)\).

Chứng minh tương tự, ta được:

\(\frac{b^2c^2}{a^2}+a^2\ge2bc\left(a,b,c>0\right)\left(2\right)\).

Chứng minh tương tự, ta được:

\(\frac{c^2a^2}{b^2}+b^2\ge2ca\left(4\right)\).

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+a^2+b^2+c^2\ge2ab+2bc+2ca\).

Do đó bất đẳng thức đã được chứng minh.

Dấu bằng xảy ra \(\Leftrightarrow a=b=c>0\).

Vậy \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)với \(a,b,c>0\).

19 tháng 4 2019

a) \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

\(\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

b)

Ta có

\(\frac{ab}{c+1}=\frac{ab}{a+b}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\frac{bc}{a+1}=\frac{bc}{\left(a+b\right)+\left(a+c\right)}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\frac{ac}{b+1}=\frac{ac}{\left(a+b\right)+\left(b+c\right)}\le\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\Leftrightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(A+b\right)}+\frac{ac}{4\left(b+c\right)}\)

\(=\frac{ab+bc}{4\left(a+c\right)}+\frac{ab+ac}{4\left(b+c\right)}+\frac{bc+ac}{4\left(a+b\right)}=\frac{1}{4}\left(\frac{b\left(a+c\right)}{a+c}\right)+\frac{1}{4}\left(\frac{a\left(b+c\right)}{b+c}\right)+\frac{c\left(a+b\right)}{a+b}\)

\(=\frac{a+b+c}{4}=\frac{1}{4}\)

11 tháng 11 2018

vip

vip

vip

chúc bạn học ngu

11 tháng 11 2018

Ta có: \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=\frac{1}{c}-\frac{1}{b}\\b-c=\frac{1}{a}-\frac{1}{c}\\c-a=\frac{1}{b}-\frac{1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=\frac{b-c}{bc}\left(1\right)\\b-c=\frac{c-a}{ac}\left(2\right)\\c-a=\frac{a-b}{ab}\left(3\right)\end{cases}}\)

Nhân (1), (2), (3) vế theo vế, ta được:

\(\left(a-b\right)\left(b-a\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2.b^2.c^2}\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2.b^2.c^2}\right)=0\)

Do đó: \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

\(\Rightarrow a=b\) hoặc \(b=c\) hoặc \(c=a\)

Với a = b thay vào (1) ta được: b = c => a = b = c.

Với b = c thay vào (2) ta được: c = a => a = b = c.

Với c = a thay vào (1) ta được: a = b => a = b = c.

\(\Rightarrow a=b=c\left(đpcm\right)\)

NV
15 tháng 6 2020

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2b\) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

Cộng vế với vế: \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)