Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a_1}{a_{2014}}=\frac{a_1.a_2.a_3....a_{2013}}{a_2.a_3.a_4....a_{2014}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2013}}{a_{2014}}=\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}\) (2013 thừa số)
(do \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}\))
=>\(\frac{a_1}{a_{2014}}=\left(\frac{a_1}{a_2}\right)^{2013}\)
Mà \(\frac{a_1}{a_{2014}}=\left(-3\right)^{2013}\Rightarrow\left(\frac{a_1}{a_2}\right)^{2013}=\left(-3\right)^{2013}\Rightarrow\frac{a_1}{a_2}=-3\)
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_1+a_2+...+a_{2013}}{a_2+a_3+...+a_{2014}}\)(theo t/c dãy tỉ số bằng nhau)
Mà \(\frac{a_1}{a_2}=-3\Rightarrow S=-3\)
Cho dãy tỉ số bằng nhau \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2013}}{a_{2014}}\) và \(\frac{a_1}{a_{2014}}\)= \(-3^{2013}\)
Tính \(\frac{a_1+a_2+a_3+...+a_{2013}}{a_2+a_3+a_4+...+a_{2014}}\)