K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

Ta có\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

b + c = -(d + a)

Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(d+a\right)}\)= -1 + (-1) + (-1) + (-1) = -4

Khi a + b + c + d \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=1+1+1+1=4\)

Vậy khi a + b + c + d = 0 => M = -4

khi a + b + c + d \(\ne\)0 => M = 4

9 tháng 8 2015

Ta có:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2c}{a+b+c+d}=4\)

=>2a+b+c+d=4a

=>2a=b+c+d

Tương tự ta có:2b=a+c+d

2c=a+b+d

2d=a+b+c

=>2a+2b=b+c+d+a+c+d=>a+b+2c+2d

=>a+b=2c+2d

=>a+b/c+d=2

Tương tự ta có:b+c/d+a=2

c+d/a+b=2

d+a/b+c=2

=>M=2+2+2+2=8

2 tháng 11 2019

Moon Light sai rồi bn nhé

Cộng vào bằng 5 nhé

28 tháng 11 2016

Đề bài: Cho dãy tỉ số bằng nhau:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

Tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

Bài làm

Cùng trừ mỗi tỉ số trên đi 1 đơn vị ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Từ đây ta suy ra 2 trường hợp:

+ Trường hợp 1:

Nếu a + b + c + d \(\notin0\) => a = b = c = d

=> M = 1 + 1 + 1 + 1 = 1 . 4 = 4

+ Trường hợp 2:

Nếu a + b + c + d = 0 thì

_a + b = - ( c + d ) ; b + c = - ( d + a )

_ c + d = - ( a + b ) ; d + a = - ( b + c )

Do đó: M = ( -1 ) + ( - 1 ) + ( - 1 ) + ( - 1) = -4

5 tháng 10 2019

Bạn ơi giải thích cho mình chỗ a+b= -(c+d) được k? Mình vẫn không hiểu lắm!

2a+b+c+da=a+2b+c+db=a+b+2c+dc=a+b+c+2dd

↔a+a+b+c+da=a+b+b+c+db=a+b+c+c+dc=a+b+c+d+dd

↔a+b+c+da+1=a+b+c+db+1=a+b+c+dc+1=a+b+c+dd+1

↔a+b+c+da=a+b+c+db=a+b+c+dc=a+b+c+dd

đến đây em xét 2 TH:

a+b+c+d≠0

a+b+c+d=0

__________________

9 tháng 8 2015

Ta có:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2c}{a+b+c+d}=4\)

=>2a+b+c+d=4a

=>2a=b+c+d

Tương tự ta có:2b=a+c+d

2c=a+b+d

2d=a+b+c

=>2a+2b=b+c+d+a+c+d=>a+b+2c+2d

=>a+b=2c+2d

=>a+b/c+d=2

Tương tự ta có:b+c/d+a=2

c+d/a+b=2

d+a/b+c=2

=>M=2+2+2+2=8

9 tháng 8 2015

ban co the giai tuong tan ra ko minh ko hiu

4 tháng 1 2022

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

4 tháng 1 2022

Cắt cu 77

 

23 tháng 10 2016

Đề có phải thế này không bạn? Nếu đúng thì bài giải phía dưới nhé.

Cho dãy tỉ số bằng nhau: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

Tính \(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{c+b}\)

Giải

Theo đề ra, ta có:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Xảy ra 2 trường hợp sau:

\(TH1:a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right);c+b=-\left(a+d\right);c+d=-\left(a+b\right);a+d=-\left(c+b\right)\)

Thay vào M

\(\Rightarrow M=\frac{a+b}{-\left(a+b\right)}+\frac{b+c}{-\left(b+c\right)}+\frac{c+d}{-\left(c+d\right)}+\frac{a+d}{-\left(a+d\right)}=-4\)

\(TH2:a+b+c+d\ne0\Rightarrow a=b=c=d\)

Thay vào M

\(\Rightarrow M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}=4\)

Vậy có 2 đáp án là: \(-4;4\)

 

8 tháng 7 2016

ko hiểu cái đề bài của bn