Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
$S=1+\cos ^2x+\cos ^4x+...+\cos ^{2n}x=1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n=\frac{(\cos ^2x-1)(1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n}{\cos ^2x-1}$
$=\frac{(\cos ^2x)^{n+1}-1}{\cos ^2x-1}=\frac{\cos ^{2n+2}x-1}{\sin ^2x}$
Câu 1:
Đồng tiền có 2 mặt S, N, xúc xắc có 6 mặt \(\Rightarrow\) không gian mẫu có \(2.6=12\) phần tử
Câu 2:
Mỗi lần gieo có 6 khả năng kết quả \(\Rightarrow\) 2 lần gieo có \(6^2=36\) khả năng
Câu 3:
\(\left(6;1\right);\left(6;2\right);\left(6;3\right);\left(6;4\right);\left(6;5\right);\left(6;6\right)\)
Câu 4:
Có đúng 1 phần tử là SN (hoặc NS) nếu ko quan tâm thứ tự gieo
Câu 5:
Có 3 biến cố : SS; NN; SN (và thêm NS nếu có quan tâm đến thứ tự gieo)
Câu 6:
Các phần tử của biến cố A: \(\left(1;2;3\right);\left(1;2;4\right)\) có đúng 2 phần tử
Câu 7:
Không gian mẫu: \(C_{10}^3\)
Số cách chọn 3 em mà không có em nữ nào: \(C_6^3\)
Số cách chọn có ít nhất 1 nữ: \(C_{10}^3-C_6^3\)
Xác suất: \(P=\frac{C_{10}^3-C_6^3}{C_{10}^3}\)
Câu 8:
Không gian mẫu: \(C_9^2\)
Số cách chọn 2 bi khác màu: \(C_5^1.C_4^1\)
Xác suất: \(P=\frac{C_5^1.C_4^1}{C_9^2}\)
Câu 9:
Câu 9 không thấy hỏi cần tính gì?
Câu 10:
Không gian mẫu \(6^2=36\)
Các phần tử của biến cố A: \(\left(1;6\right);\left(2;5\right);\left(3;4\right)\) có 3 phần tử
Xác suất: \(P=\frac{3}{36}=\frac{1}{12}\)
Câu 11:
Không gian mẫu: \(2^3=8\)
Các phần tử biến cố A: \(\left(NNS\right)\)
Xác suất: \(P=\frac{1}{8}\)
Gọi \(\overline{a_1a_2a_3a_4a_5a_6}\) là dãy số tự nhiên cần tìm:
ta có \(a_1+a_2+a_3=a_4+a_5+a_6+1\)
mà \(a_1+a_2+a_3+a_4+a_5+a_6=21\)
\(\Rightarrow a_4+a_5+a_6=10\)
các bộ ba số có tổng là 10
\(\left(1,3,6\right);\left(1,4,5\right);\left(2,3,5\right)\)
vì \(a_6\) là số chẵn
\(\Rightarrow\overline{a_4a_5a_6}=2.2.2=8\)
\(\overline{a_1a_2a_3}=3!\)
QTN \(8.3!=48\) số
S= u1.u1 + u2.u2+...+un.un
S = u1.(u2 - d) + u2.(u3 - d)+...+un(un+1 - d)
S = u1.u2 + u2.u3 +...+un.un+1-d(u1+u2+...+un)
Đặt A = u2.u3 + u3.u4+...+un.un+1
3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1)
3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u5 - u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1
3d.A = un.un+1.un+2 - u1.u2.u3
3d.A = (u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)
A = [(u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d)
S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2
Bài 3:
a: Gọi số cần tìm là \(\overline{abcdefg}\)
a có 7 cách
b có 7 cách
c có 6 cách
d,e,f,g lần lượt có 5,4,3,2 cách
=>Số cách là 7x7x6x5x4x3x2(cách)
c: Gọi số cần tìm là \(\overline{abcdef}\)
a có 7 cách
b có 7 cách
c có 6 cách
d,e,f lần lượt có 5,4,3 cáhc
=>Số cáhc là 7x7x6x5x4(cách)
b: Gọi số cần tìm là \(\overline{abc}\)
a có 4 cách chọn
b có 3 cách chọn
c có 2 cách chọn
=>Số cách chọn là 4x3x2=24(cách)
a/
\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(u_n=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(u_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(u_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)
b/ \(u_n=\dfrac{1}{1^2+3}+\dfrac{1}{2^2+6}+...+\dfrac{1}{n^2+3n}=\dfrac{1}{1.4}+\dfrac{1}{2.5}+...+\dfrac{1}{n\left(n+3\right)}\)
\(u_n=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\right)\)
\(u_n=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\)
\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\right)\)
\(\Rightarrow lim\left(u_n\right)=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{11}{18}\)
Đáp án C