K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, . Câu 318. Cho...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0

\(f\left(x\right)=\sqrt{4+3u\left(x\right)}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{\left(4+3u\left(x\right)\right)'}{2\sqrt{4+3u\left(x\right)}}=\dfrac{3u'\left(x\right)}{2\cdot\sqrt{4+3u\left(x\right)}}\)

\(f'\left(1\right)=\dfrac{3\cdot u'\left(1\right)}{2\cdot\sqrt{4+3u\left(1\right)}}=\dfrac{3\cdot10}{2\cdot\sqrt{4+3\cdot7}}=3\)

=>Chọn C

1.Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau và chia hết cho 5 2.Có bao nhiêu cách để chia 10 cuốn vở giống nhau cho 3 em học sinh sao cho mỗi em có ít nhất một cuốn vở 3.Một hộp có 10 viên bi màu trắng, 20 viên bi màu xanh và 30 viên bi màu đỏ.Số cách chọn ngẫu nhiên 8 trong số các viên bi thuộc hộp đó để được 8 viên bi mà không có viên nào màu xanh 4.Một giải thể thao chỉ có 3 giải: nhất, nhì và ba....
Đọc tiếp

1.Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau và chia hết cho 5

2.Có bao nhiêu cách để chia 10 cuốn vở giống nhau cho 3 em học sinh sao cho mỗi em có ít nhất một cuốn vở

3.Một hộp có 10 viên bi màu trắng, 20 viên bi màu xanh và 30 viên bi màu đỏ.Số cách chọn ngẫu nhiên 8 trong số các viên bi thuộc hộp đó để được 8 viên bi mà không có viên nào màu xanh

4.Một giải thể thao chỉ có 3 giải: nhất, nhì và ba. Trong số 20 vận động viên tham gia thi đấu, số khả năng mà 3 người có thể được ban tổ chức trao giải nhất, nhì và ba là

5.Có 8 con tem và 5 bì thư.Chọn ra 3 con tem để dán vào ba bì thư mỗi bì thư dán một con tem.Số cách dán tem là

6.Từ các chữ số 0 1 2 3 4 5 6 có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số khác nhau mà mỗi chữ số đều nhỏ hơn 25000

7.Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau và chia hết cho 5

8.Có bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau

1
30 tháng 10 2020

Mọi người giúp mình với cảm ơn

Giúp mình làm các bài này với ( Giải theo phương pháp tự luận) Câu 1: gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu ? Câu 2 gieo một con súc sắc cân đối đồng chất 2 lần. Số phần tử không gian mẫu là bao nhiêu ? Câu 3 gieo con súc sắc 2 lần . Biến cố A là biến cố để sau 2 lần gieo có ít nhất 1 mặt 6 chấm. Hãy liệt kê số phần tử của biến cố A Câu 4 gieo đồng...
Đọc tiếp

Giúp mình làm các bài này với

( Giải theo phương pháp tự luận)

Câu 1: gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu ?

Câu 2 gieo một con súc sắc cân đối đồng chất 2 lần. Số phần tử không gian mẫu là bao nhiêu ?

Câu 3 gieo con súc sắc 2 lần

. Biến cố A là biến cố để sau 2 lần gieo có ít nhất 1 mặt 6 chấm. Hãy liệt kê số phần tử của biến cố A

Câu 4 gieo đồng tiền 2 lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là bao nhiêu ?

Câu 5 gieo ngẫu nhiên 2 đồng tiền thì k gian mẫu của phép thử có bao nhiêu biến cố ?

Câu 6 Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn k vượt quá 7. Số phần tử của biến cố A là bao nhiêu ?

Câu 7 một tổ học sinh gồm có 6 nam và 4 nữ. Chọn ngẫu nhiên 3 em. Tính xác suất 3 em được chọn có ít nhất 1 nữ.

Câu 8 một hộp có 5 bi đen, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Tính xác suất 2 bi được chọn có đủ 2 màu

Câu 9 trong một lớp học có 54 học sinh trong đó có 22 nam và 32 nữ. Cho rằng ai cũng có thể tham gia làm ban cán sự lớp. Chọn ngẫu nhiên 4 người để làm ban cán sự lớp; 1 lớp trưởng, 1 lớp phó học tập, 1 Bí thư chi đoàn, 1 là lớp phó lao động. Ban cán sự có 2 nam và 2 nữ

Câu 10 gieo ngẫu nhiên 2 con xúc sắc cân đối đồng chất. Tìm xác suất của các biến cố sau. A: " tổng số chấm xuất hiện là 7 ".

Câu 11 gieo 3 đồng xu phân biệt đồng chất. Gọi A biến cố" có đúng 2 lần ngửa". Tính xác suất A

2
NV
11 tháng 11 2019

Câu 1:

Đồng tiền có 2 mặt S, N, xúc xắc có 6 mặt \(\Rightarrow\) không gian mẫu có \(2.6=12\) phần tử

Câu 2:

Mỗi lần gieo có 6 khả năng kết quả \(\Rightarrow\) 2 lần gieo có \(6^2=36\) khả năng

Câu 3:

\(\left(6;1\right);\left(6;2\right);\left(6;3\right);\left(6;4\right);\left(6;5\right);\left(6;6\right)\)

Câu 4:

Có đúng 1 phần tử là SN (hoặc NS) nếu ko quan tâm thứ tự gieo

Câu 5:

Có 3 biến cố : SS; NN; SN (và thêm NS nếu có quan tâm đến thứ tự gieo)

Câu 6:

Các phần tử của biến cố A: \(\left(1;2;3\right);\left(1;2;4\right)\) có đúng 2 phần tử

NV
11 tháng 11 2019

Câu 7:

Không gian mẫu: \(C_{10}^3\)

Số cách chọn 3 em mà không có em nữ nào: \(C_6^3\)

Số cách chọn có ít nhất 1 nữ: \(C_{10}^3-C_6^3\)

Xác suất: \(P=\frac{C_{10}^3-C_6^3}{C_{10}^3}\)

Câu 8:

Không gian mẫu: \(C_9^2\)

Số cách chọn 2 bi khác màu: \(C_5^1.C_4^1\)

Xác suất: \(P=\frac{C_5^1.C_4^1}{C_9^2}\)

Câu 9:

Câu 9 không thấy hỏi cần tính gì?

Câu 10:

Không gian mẫu \(6^2=36\)

Các phần tử của biến cố A: \(\left(1;6\right);\left(2;5\right);\left(3;4\right)\) có 3 phần tử

Xác suất: \(P=\frac{3}{36}=\frac{1}{12}\)

Câu 11:

Không gian mẫu: \(2^3=8\)

Các phần tử biến cố A: \(\left(NNS\right)\)

Xác suất: \(P=\frac{1}{8}\)

10 tháng 3 2021

undefinedcâu 1

22 tháng 1 2020

Câu 4.

\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)

\(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)

\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)

22 tháng 1 2020

Câu 5.

Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)