Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhá:
Xét ΔΔABC vuông tại A có :
AB2+AC2=BC2( định lý pitago)
⇒⇒ 202+AC2= 252
⇒⇒ 400 + AC2= 625
⇒⇒AC2=625-400
⇒⇒AC2=225
⇒⇒AC2=152
⇒⇒AC = 15
b)
Cái này là BA = AK chứ
Xét ΔΔBAC và ΔΔCAK có :
AC chung
BA=AK
góc BAC = góc CAK (=90 độ )
Do đó : ΔΔABC = ΔΔAKC ( hai cạnh góc vuông )
⇒⇒BC=CK ( hai cạnh tương ứng )
⇒⇒ΔΔBCK cân tại C
c) ta có : d ⊥⊥AC
AB⊥⊥AC
nên d // AB
=> a//BK ( ba điểm này thẳng hàng mà )
=> góc BKC = góc KCM ( hai góc so le trong )
Xét ΔΔBIK và ΔΔCIM có :
IK = IC ( I là trung điểm của CK )
góc BIK = góc CIM ( đối đỉnh )
góc BKI= góc ICM ( cmt )
Do đó : .. hai tam giác này bằng nhau
và suy ra BI = IM
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
a)
Xét △ABC vuông tại A có :
BC2=AB2+AC2(định lý py-ta-go)
⇒102=62+AC2
⇒100=36+AC2
⇒AC2=100-36=64
⇒AC=8cm
Xét △ABC có AC>AB(8>6)
⇒∠B>∠C(quan hệ giữa góc và cạnh đối diện)
Bài 1: Ta có hình vẽ sau:
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a) Theo định lí Pytago vào \(\Delta ABC\)vuông tại A :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\)hay \(AC=6cm\)
b) Xét tam giác \(CAB\)vuông tại A và \(CAK\)vuông tại A :
\(CA\)chung
\(AB=AK\)
\(\Rightarrow CB=CK\)( hai cạnh tương ứng )
Xét \(\Delta CBK\)có \(CB=CK\left(cmt\right)\)
\(\Rightarrow\Delta BCK\)cân tại \(C\)( định nghĩa tam giác cân )
c) Ko thấy