K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

a, Xét △ABM vuông tại A và △DBM vuông tại D

Có: BM là cạnh chung

      ∠ABM = ∠DBM (gt)

=> △ABM = △DBM (ch-gn)

b, Xét △ABC vuông tại A và △DBE vuông tại D

Có: AB = DB (△ABM = △DBM)

      ∠ABC là góc chung

=> △ABC = △DBE (cgv-gnk)

=> AC = DE (2 cạnh tương ứng)

c, Xét △AME vuông tại A và △DMC vuông tại D

Có:  AM = MD (△ABM = △DBM)

   ∠AME = ∠DMC (2 góc đối đỉnh)

=> △AME = △DMC (cgv-gnk)

d, Vì AB = BD (cmt)  => B thuộc đường trung trực của AD

Vì AM = DM (cmt) => M thuộc đường trung trực của AD

=> BM là đường trung trực của AD

=> BM ⊥ AD

e, Xét △DHC vuông tại K và △AKE vuông tại H

Có: DC = AE (△DMC = △AME)

  ∠DCH = ∠AEK (△ABC = △DBE)

=> △DHC = AKE (ch-gn)

f, Xét △AMK vuông tại K và △DMH vuông tại H

Có: AM = MD (cmt)

   ∠AMK = ∠DMH (2 góc đối đỉnh)

=> △AMK = △DMH (ch-gn)

=> MK = MH (2 cạnh tương ứng)

Xét △MKN vuông tại K và △MHN vuông tại H

Có: MK = MH (cmt)

     MN là cạnh chung

=> △MKN = △MHN (ch-cgv)

=> ∠KMN = ∠HMN (2 góc tương ứng)

=> MN là phân giác KMH

g, Ta có: AK + KN = AN và DH + HN = DN

Mà AK = DH (△AMK = △DMH) ; KN = HN (△MKN = △MHN)

=> AN = DN

Xét △BAN và △BDN

Có: AB = BD (cmt)

      AN = DN (cmt)

    BN là cạnh chung

=> △BAN = △BDN (c.c.c)

=> ∠ABN = ∠DBN (2 góc tương ứng)

=> BN là phân giác ABD 

Mà BM là phân giác ABD 

=> BN ≡ BM

=> 3 điểm B, M, N thẳng hàng

h, Để △ADN là tam giác đều mà AN = DN (cmt)

<=> ∠AND = 60o   <=> ∠ANM + ∠MND = 60o

Mà ∠ANM = ∠MND (△BAN = △BDN)

<=> ∠ANM = ∠MND = 30o

Vì AB ⊥ AC (gt) và DH ⊥ AC (gt) => DN ⊥ AC

=> AB // DN

=> ∠ABN = ∠BND (2 góc so le trong) và ∠ANB = ∠NBD (2 góc so le trong)

Mà ∠ANB = ∠BND = 30o (cmt)

=> ∠ABN = ∠NBD = 30o 

=> ∠ABN + ∠NBD = 30o + 30o 

=> ∠ABD = 60o 

=> ∠ABC = 60o

Vậy để △ADN là tam giác đều khi △ABC có ∠ABC = 60o  

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0
18 tháng 4 2020

B C D M H A E K N

a, Xét 2 tam giác vuông : ABM và DBM

BM chung

\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )

\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )

\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )

b. Xét 2 tam giác vuông : ABC và DBE có :

BA = BD ( c/m ỏ câu a )

\(\widehat{B}\)chung

\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )

c, Xét 2 tam giác vuông : AMK và DMH

AM = DM ( 2 cạnh tg ứng do ABM = DBM )

\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )

\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )

Xét 2 tam giác vuông : MNK và MNH

MK = HM ( cmt )

MN chung

\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )

\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )

=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)

d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))

KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))

\(\Rightarrow AN=AK+KN=DH+HN=DN\)

Xét 2 tam giác : ABN và DBN

AB = DB ( cmt )

BN chung 

AN = BN ( cmt )

\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )

=> NB là tia phân giác \(\widehat{AND}\)( 2 )

Từ (1)(2) 

=> B , M , N thẳng hàng

5 tháng 4 2020

Giúp mình nhé !

a) Xét tam giác BMA và tam giác BMD có :

ABM=DBM

BM cạnh chung

BAM=BDM(=90 độ)

=> hai tam giác bằng nhau (c.g.c)

=>góc BMA=góc BMD (góc tương ứng)

chúc bn học tốt