Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B N C A D M
a,Xét tam giác vuông ABD và NBD có
BD chung
ABD^=NBD^
=>Tam giác ABD = tam giác NBD (ch-gn)
c,Ta có : AB>AD
NC>ND
Mà AD=ND
=>AB+NC>2AD
a: Xét ΔBAD vuông tại A và ΔBND vuông tại N có
BD chung
góc ABD=góc NBD
=>ΔBAD=ΔBND
=>DA=DN
mà DN<DC
nên DA<DC
b: Xét ΔDAM vuông tại A và ΔDNC vuông tại N có
DA=DN
góc ADM=góc NDC
=>ΔDAM=ΔDNC
=>AM=NC
c: BA+AM=BM
BN+NC=BC
mà BA=BN và AM=NC
nên BM=BC
=>ΔBMC cân tại B
d: BM=BC
DM=DC
=>BD là trung trực của MC
mà I là trung điểm của MC
nên B,D,I thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBND vuông tại N có
BD chung
\(\widehat{ABD}=\widehat{NBD}\)
Do đó: ΔBAD=ΔBND
b: Xét ΔADM vuông tại A và ΔNDC vuông tại N có
DA=DN
\(\widehat{ADM}=\widehat{NDC}\)
Do đó:ΔADM=ΔNDC
Suy ra: AM=NC
c: Ta có: BA+AM=BM
BN+NC=BC
mà BA=BN
và AM=NC
nên BM=BC
hay ΔBMC cân tại B
d: Ta có: BM=BC
nên B nằm trên đường trung trực của MC(1)
Ta có: DM=DC
nên D nằm trên đường trung trực của MC(2)
Ta có: IM=IC
nên I nằm trên đường trung trực của MC(3)
Từ (1), (2) và (3) suy ra B,D,I thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBND vuông tại N có
BD chung
góc ABD=góc NBD
=>ΔBAD=ΔBND
b: Xét ΔBNM vuông tại N và ΔBAC vuông tại A có
BN=BA
góc NBM chung
=>ΔBNM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
A B C N D M
a, Xét △DBA vuông tại A và △DBN vuông tại N
Có: DB là cạnh chung
ABD = NBD (gt)
=> △DBA = △DBN (ch-gn)
b, Vì △DBA = △DBN (cmt) => AD = ND và AB = NB
Xét △CAB vuông tại A và △MNB vuông tại N
Có: ABC là góc chung
AB = NB (cmt)
=> △CAB = △MNB (cgv-gnk)
=> BC = MB (2 cạnh tương ứng)
=> △BMC cân tại B
c, Xét △NDC vuông tại N có: ND < CD (cạnh góc vuông bé hơn cạnh huyền)
=> AD < CD (ND = AD)
Xét △ABC vuông tại A có: AC < BC (cạnh góc vuông bé hơn cạnh huyền)
=> AD + CD < NC + NB
=> AD + AD < AD+ CD < NC + AB (AB = NB; AD < CD)
=> 2 . AD < NC + AB (đpcm)