Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chứng minh: ΔABD = ΔEBD
Xét ΔABD và ΔEBD, có:
BD là cạnh huyền chung (gt)
Vậy ΔABD = ΔEBD (cạnh huyền – góc nhọn)
2) Chứng minh: ΔABE là tam giác đều.
ΔABD = ΔEBD (cmt)
AB = BE
mà góc B = 60 độ (gt)
Vậy ΔABE có AB = BE và góc 60 độ nên ΔABE đều.
3) Tính độ dài cạnh BC
Ta có (gt)
Góc C+B = 90 độ(ΔABC vuông tại A)
Mà BEA = góc B = 60 độ (ΔABE đều)
Nên góc EAC = góc C ΔAEC cân tại E
EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
a) Xét ΔABD,ΔEBD có :
BADˆ=BEDˆ(=90độ)
BD:Chung
ABDˆ=EBDˆ(BD là tia phân giác của BˆB^)
=> ΔABD=ΔEBD(cạnh huyền - góc nhọn) (*)
b) Từ (*) suy ra : AB=BE (2 cạnh tương ứng)
=> ΔABE cân tại B
Lại có : ABEˆ=60o (giả thiết)
Do đó : ΔABE là tam giác đều.
bài ca dao đã mượn hình ảnh “bầu và bí”. Đây là hai loại cây khác nhau nhưng có nhưng đặc điểm, môi trường sống giống nhau. Chúng cùng thuộc giống cây thân leo, thường được trồng chung một giàn. Hình ảnh cây bầu, cây bí chung một giànn ta rằng dù chúng có là loài khác nhau đi chăng nữa nhưng vẫn biết chia sẻ không gian, cùng nhau chung sống hòa thuận.
_Hình tự vẽ_
a,vì tam giác ABC vuông tại A =>góc A=90 độ và góc B=60 độ(gt)
áp dụng định lí tổng 3 góc trong 1 tam giác :<A+<B+<C=180 độ
=><C= 180 -90-60=30(độ)
hay <ACB=30 độ
b, Xét tam giác ABD và EBD có:
BD-cạnh chung
<ABD=<DBE(vì bd phân giác <B)
=> tam giác ABD=tam giác EBD (ch-gn)
c,(tự làm)
d,(hình như đề sai cạu ạk)-(đề ko cho cạnh AC bằng b.nhiêu)
d) +) Xét \(\Delta\)ABC vuông tại A
=> \(\widehat{ABC}+\widehat{ACB}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ACB}=30^o\)
+) Xét \(\Delta\)ABC vuông tại A có \(\widehat{ACB}=30^o\)
=> BC = 2 AB ( áp dụng tính chất trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh huyền sẽ bằng 2 lần cạnh đối diện vs góc 30 độ )
=> BC = 2. 5
=> BC = 10 ( cm)
Vậy BC = 10 (cm )
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
2: Ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
3: Xét ΔABC vuông tại A có
\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)
=>BC=10(cm)
1/ Chứng minh: ΔΔABD = ΔΔEBD
Xét ΔΔABD và ΔΔEBD, có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD là cạnh huyền chung
ˆABD=ˆEBDABD^=EBD^ (gt)
Vậy ΔΔABD = ΔΔEBD (cạnh huyền – góc nhọn)
2/ Chứng minh:ΔΔABE là tam giác đều.
ΔΔABD =ΔΔEBD (cmt)
=> AB = BE
mà ˆB=600B^=600 (gt)
Vậy ΔΔABE có AB = BE và nên ΔΔABE đều.
3/ Tính độ dài cạnh BC
Ta có : Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800
mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt) => ˆC=300C^=300
Ta có : ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)
Mà ˆBAE=600BAE^=600(ΔΔABE đều) nên ˆEAC=300EAC^=300
Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E
=> EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
2: Ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
a, xét tam giác ABD và tam giác EBD có : BD chung
^ABD = ^EBD do BD là pg của ^ABC (gt)
^BAD = ^BED = 90
=> tam giác ABD = tam giác EBD (ch-gn)
b, tam giác ABD = tam giác EBD (Câu a)
=> AB = BE (Đn)
=> tam giác ABE cân tại B (đn)
mà ^ABE = 60 (gt)
=> tam giác ABE đều (dh)
c, tam giác ABC vuông tại A (gt) => ^ACB = 90 - ^ABC (đl)
^ABC = 60 (Gt)
=> ^ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2
AB = 5 cm (GT)
=> BC = 10
tam giác ABC vuông tại A (gt) => AB^2 + AC^2 = BC^2
AB = 5; BC = 10
=> AC^2 = 10^2 - 5^2
=> AC^2 = 75
=> AC = \(\sqrt{75}\) do AC > 0
A)XÉT \(\Delta ABD\)VUÔNG VÀ \(\Delta EBD\)VUÔNG CÓ
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
BD LÀ CẠNH CHUNG
\(\Rightarrow\Delta ABD=\Delta EBD\left(CH-GN\right)\)
B) TA CÓ \(\Delta ABD=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AB=EB\)(HAI CẠNH TƯƠNG ỨNG)
NÊN \(\Delta ABE\)CÂN TẠI B
C) XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
THAY\(\widehat{90}+\widehat{60}+\widehat{C}=180\)
\(\Rightarrow\widehat{C}=30\)
MÀ TRONG TAM GIÁC VUÔNG , CẠNH ĐỐI DIỆN VỚI GÓC 30 ĐỘ BẰNG NỬA CẠNH HUYỀN(Đ/L)
\(\Rightarrow2AB=BC\)
THAY\(2.5=BC=10\left(cm\right)\)
XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\left(Đ/LPY-TA-GO\right)\)
THAY\(10^2=5^2+AC^2\)
\(100=25+AC^2\)
\(\Rightarrow AC^2=100-25\)
\(\Rightarrow AC^2=75\)
\(\Rightarrow AC=\sqrt{75}=5\sqrt{3}\)
1. _ Xét Δ ABD vuông tại A và Δ EBD vuông tại E có
BD : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( gt)
⇒ Δ ABD = Δ EBD ( ch - gn )
2. Theo câu 1 ta có Δ ABD = Δ EBD
⇒ AB = EB ( 2 cạnh tương ứng )
_Xét Δ ABE có
\(\widehat{ABC}=60^o\) ( gt)
AB = EB ( cmt)
⇒ ΔABE là tam giác đều
3. _Xét ΔABC vuông tại A
⇒ \(\widehat{ABC}+\widehat{C}=90^o\) ( tính chất tam giác cân )
\(\Rightarrow\widehat{C}+60^o=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
_ Xét Δ ABC vuông tại A có \(\widehat{C}=30^o\)
⇒ AB = \(\frac{1}{2}\) BC
Mà AB = 5 cm
\(\Rightarrow\frac{1}{2}BC=5\)
\(\Rightarrow BC=5.2=10\) ( cm)
Vậy BC = 10 ( cm)
@@ Học tốt
Chiyuki Fujito
ok bạn