Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
BC=căn AB^2+AC^2=5cm
Xét ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2; CH*CB=CA^2
=>HB=3^2/5=1,8cm; CH=4^2/5=3,2cm
AH=căn 1,8*3,2=2,4(cm)
2: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=HE^2
ΔAHC vuông tại H có HF là đường cao
nên AF*FC=HF^2
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
AE*EB+AF*FC
=HE^2+HF^2
=EF^2
=AH^2
4:
BE*BA+CF*CA+2*HB*HC
=BH^2+CH^2+2*HB*HC
=(BH+CH)^2=BC^2
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
b: MF/MB=HF/HB
NE/NC=HE/HC
Xét ΔHFE và ΔHBC có
góc HFE=góc HBC
góc FHE=góc BHC
=>ΔHFE đồng dạng với ΔHBC
=>HF/HB=HE/HC
=>MF/MB=NE/NC
a: Xét ΔBEM vuông tại E và ΔBHA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔBEM∼ΔBHA
Suy ra: \(\dfrac{BE}{BH}=\dfrac{BM}{BA}\)
hay \(BE\cdot BA=BH\cdot BM\)
Tứ giác AEHM nội tiếp (E và H cùng nhìn AM dưới 1 góc vuông)
\(\Rightarrow\widehat{AHE}=\widehat{AME}=45^0\) (AEMF là hv nên AME=45 độ)
\(\Rightarrow\widehat{BHE}=\widehat{AHB}-\widehat{AHE}=45^0=\widehat{AHE}\)
\(\Rightarrow HE\) là phân giác AHB
Cũng do AEHM nội tiếp \(\Rightarrow\widehat{EAH}=\widehat{EMH}\)
Mà \(\widehat{EMH}=\widehat{FCH}\) (đồng vị) \(\Rightarrow\widehat{EAH}=\widehat{FCH}\) (1)
Tứ giác AHMF nội tiếp (H và F cùng nhìn AM dưới 1 góc vuông)
\(\Rightarrow\widehat{MHF}=\widehat{MAF}=45^0\Rightarrow\widehat{MHF}=\widehat{AHE}\) (2)
(1);(2) \(\Rightarrow\Delta AEH\sim\Delta CFH\left(g.g\right)\)
\(\Rightarrow\dfrac{AH}{AE}=\dfrac{CH}{CF}\) (3)
Áp dụng định lý phân giác cho tam giác ABH: \(\dfrac{AH}{AE}=\dfrac{BH}{BE}\) (4)
(3);(4) \(\Rightarrow\dfrac{CH}{CF}=\dfrac{BH}{BE}\Rightarrow\dfrac{BE}{CF}=\dfrac{BH}{CH}\)