Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có góc B > góc C suy ra AC > AB
Xét tam giác vuông ABH và tam giác vuông ACH
chung AH
có AC > AB (CMT)
suy ra HC > HB
c) Vì HC > HB (CMT)
Xét tam giác vuông BHD và tam giác vuông CHD
Có chung DH , BC >HB nên DC >DB
Xét tam giác BDC có DC > DB nên góc DBC > góc DCB
Bài 16:
Xét tam giác ABM và tam giác DCM
có AM=DM (GT)
góc AMB=góc DMC (đối đỉnh)
BM=MC (GT)
suy ra tam giác ABM=tam giác DCM (c.g.c) (1)
b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)
mà góc MAB so le trong góc MDC
suy ra AB // CD
c) Từ (1) suy ra AB = CD
Xét tam giác ACD có AC + CD > AD
mà AD=2AM, AB=CD (CMT)
suy ra AC +AB >2AM
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
Bài 1: Ta có hình vẽ sau:
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có
AB=AE
AC chung
=>ΔABC=ΔAEC
b: Xet ΔCEB có
CA,BH là trung tuyến
CA cắt BH tại M
=>M là trọng tâm
=>CM=2/3*12=8cm
c: Xét ΔCBE có
A là trung điểm của BE
AK//CE
=>K la trung điểm của BC
=>E,M,K thẳng hàng
a)Xét hai tam giác ABM và DMC, ta có:
MA= MD(gt)
Góc ABM=CMD(đối đỉnh)
MB=MC(Vì AM là đường trung tuyến)
=> Tam giác ABM= Tam giác DMC(c.g.c)
b)Xét hai tam giác vuông AHB và EHB, ta có
AH=EH(gt)
AH: cạnh chung
=>tam giác AHB= tam giác EHM( 2 cạnh góc vuông)
=>AB=EM( 2 cạnh tương ứng)
=>tam giác ABE cân tại B
mình chỉ biết giải 2 câu thuj