Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ
A B C M E F H D I
a) + Xét ΔAEF có AH là đường cao đồng thời là đương phân giác
=> ΔAEF cân tại A
=> AH cũng đồng thời là đường trung tuyến của ΔAEF
=> EH = 1/2 EF
+ Xét Δ AEH vuông tại A theo định lý Py-ta-go ta có :
\(AE^2=AH^2+EH^2\)
\(\Rightarrow AE^2=AH^2+\left(\frac{EF}{2}\right)^2=AH^2+\frac{EF^2}{4}\)
b ) Xem lại đề nha bn!
c) Kẻ BI // AC \(\left(I\in EF\right)\)
+ Δ AEF cân tại A
\(\Rightarrow\widehat{AEF}=\widehat{AFE}\)
+ BI // AC \(\Rightarrow\widehat{BIE}=\widehat{AFE}\)
\(\Rightarrow\widehat{BIE}=\widehat{BEI}\) => ΔBEI cân tại B
=> BE = BI
+ BI // CF \(\Rightarrow\widehat{MBI}=\widehat{MCF}\) ( 2 góc so le trong )
+ ΔBMI = ΔCMF ( g.c.g )
=> BI = CF => BE = CF
E D A C B F I
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
a)Ta có F thuộc tia trung trực của CE
=>FE=FC (1)
Xét tam giác BÀ và tam giác EAF có
BA=AE (GT)
góc BAF = góc EAF(À là tia phân gics của góc A)
AF là cạnh chung
Do đó tam giácBAF=tam giác EAF (c.g.c)
=>BF=EF( 2 cạnh tương ứng)(2)
Từ (1)và (2) suy ra FC=FB
Suy ra tam giác BFC cân tại F (đpcm)
sao ko cs câu b